Зарядное устройство-тестер аккумуляторов на Atmega8. Зарядное устройство для автомобильных аккумуляторов на Atmega8 Самодельное зарядное устройство на atmega8

Частотомер на АТ90S2313

Виртуальный частотомер это "комплект" из программы для PC и простого измерительного прибора, который подключается к COM порту компьютера. Виртуальный прибор позволяет измерять частоту, период, временные интервалы и вести подсчет импульсов.

Подробности: http://home.skif.net/~yukol/FMrus.htm

Рекомендую собрать простая конструкция не требует настройки и главное работает! Микроконтроллер программировал программатором PonyProg -отличный программатор, простой, большая номенклатура программируемых микроконтроллеров, работает под Windows, интерфейс русский.


Журнал "Радио" N1 2002г. Для Ni-Cd аккумуляторов. Позволяет заряжать 4 аккумулятора.



Частотомер на Pic 16F84A

Технические характеристики частотомера:

Максимальная измеряемая частота.............30 МГц;

Максимальное разрешение измеряемой частоты.. .10 Гц.

Чувствительность по входу....................250 мВ;

Напряжение питания.........................8... 12 В:

Потребляемый ток............................35 мА


Подробности, прошивка: http://cadcamlab.ru


Паяльная станция на Atmega 8


Переключение паяльника и фена осуществляется переключателями ПК. Управление феном осуществляется тиристором, т.к. фен на 110в вместо R1 диод катодом к в.6.


Подробности, прошивка: http://radiokot.ru/forum


Цифровой измеритель емкости без выпайки из схемы

Описание дано в журнале "Радио" №6 2009 г. Конструкция собрана на AT90S2313, без изменений в прошивке применил Tiny2313. В Поньке выставил галки для SUT1, CKSEL1, CKSEL0, остальные пустые. MAХ631 не ставил, она что то у нас дорогая, решил запитать от блока питания через стабилизатор 7805, R29, R32 , R33 посадил на плюс питания. Кроме измерителя емкости в корпусе смонтирован пробник, для проверки транзисторов без выпайки и генератор НЧ ВЧ сигналов.



Измеритель параметров полупроводниковых приборов на ATmega8

Прибор умеет:

Определять выводы полупроводников;
- определять тип и структуру;
- измерять статические парамеры.
Измеряет диоды, биполярные транзисторы,полевые транзисторы JFET и MOS, резисторы, конденсаторы.


Измеритель выполнен в одном корпусе с измерителем FCL, индикатор переключается между приборами переключателем ПК.

Частотометр, измеритель ёмкости и индуктивности - FCL-meter

Описываемый ниже прибор позволяет в широких пределах измерять частоты электрических колебаний, а также ёмкость и индуктивность электронных компонентов с высокой точностью. Конструкция обладает минимальными размерами, массой и энергопотреблением.

Технические характеристики:

Напряжение питания, В: 6…15

Ток потребления, мА: 14…17

Пределы измерения:

F1, МГц 0,01…65**

F2, МГц 10…950

С 0,01 пФ…0,5 мкФ

L 0,001 мкГн…5 Гн


Схема выносной головки


Подробнее: http://ru3ga.qrz.ru/PRIB/fcl.shtml


Миниатюрный вольтметр на микроконтроллере ATmega8L


Здесь рассматривается конструкция вольтметра на одном лишь микроконтроллере ATmega8L и индикаторе от электронного медицинского термометра. Диапазон измеряемых напряжений постоянного тока ±50 В. Как дополнительная функция – реализован режим звукового пробника для проверки целостности проводов, ламп накаливания. Устройство автоматически переходит в дежурный режим при отсутствии измерений. Питание микроконтрллера осуществляется от двух миниатюрных щелочных элементов (элементы питания для наручных часов), я поставил 1 элемент на 3в. Необходимости часто менять элементы питания не будет: потребляемый ток в активном режиме составляет всего 330 мкА, в дежурном режиме – менее 300 нА. Благодаря своей миниатюрной конструкции и возможностям устройство полезно и практично. В корпус от термометра не влезла у меня плата, и я сделал в корпусе от фламастера. Плату делал свою, резисторы R5-R7 установил ветикально на шинах. Прошивку из исходника помог сделать VADZZ спасибо ему. Выводы индикатора с лево на право, выводы внизу и лицом к себе.

Схема (для полноформатной схемы сохраните изображение себе на компьютер).

Подробнее смотри: http://www.rlocman.ru/shem/schematics.html?di=63917

ЗУ с функцией измерения емкости

Захотелось померять емкость аккумуляторов, импортные измерители достаточно дорого стоят, нашел интересную схему и собрал. Работает нормально, заряжает, измеряет, но с какой точностью затрудняюсь сказать - нет эталона. Мерял аккумуляторы довольно приличных фирм 2700 ма/ч - намерял 2000. Аккумуляторы от игрушек 700 ма/ч -350, заказывал на EBAY китайские аккумуляторы BTY 2500 ма/ч - 450 ма/ч, но при этом достаточно приличные, неплохо работают в игрушках, гораздо выгоднее батареек.


Устройство предназначено для зарядки NiMH аккумуляторов и контроля их емкости. Переключение режимов заряд/разряд осуществляется кнопкой SА1. Режим работы отображается с помощью светодиодов и десятичными точками двух первых разрядов семисегментного индикатора.
Сразу после включения питания устройство переходит в режим заряд. На индикаторе отображается время заряда. После истечения запрограммированного промежутка времени заряд прекращается. Об окончании заряда (и разряда то же) свидетельствует зажженная точка четвертого разряда. Ток заряда определяется как С/10 где С - емкость батареи, выставляется подстроечником R14.
Принцип действия измерителя основан на подсчете времени за которое напряжение аккумулятора снизится до1,1 В. Ток разряда должен быть равен 450 ма, выставляется R16. Для того чтобы измерить емкость, надо вставить аккумулятор в отсек для разряда и запустить процесс нажатием на кнопку! Устройство способно разряжать только один аккумулятор .

Подробнее: http://cxem.net

Универсальная печь радиолюбителя

Печка для пайки SMD деталей, имеет 4 программируемых режима.

Схема блока управления (для полноформатной схемы сохраните изображение себе на компьютер).


Блок питания и управление нагревателем


Собрал данную конструкцию для управления ИК паяльной станцией. Может когда нибудь и печкой управлять буду. Была проблема с запуском генератора, поставил конденсаторы 22 пф с выводов 7, 8 на массу, и стала нормально запускаться. Все режимы нормально отрабатывает, нагружал 250 вт керамическим нагревателем.

Подробнее: http://radiokot.ru/lab/hardwork/11/

Пока печки нет, сделал вот такой нижний подогрев, для небольших плат:

Нагреватель 250 вт, диаметр 12 см, прислали из Англии, покупал на EBAY.


Цифровая паяльная станция на PIC16F88x/PIC16F87x(a)

Паяльная станция с двумя одновременно действующими паяльником и феном. Можно использовать разные МК (PIC16F886/PIC16F887, PIC16F876/PIC16F877, PIC16F876a/PIC16F877a). Применен дисплей от Nokia 1100 (1110). Обороты турбины фена регулируются электронно, так же задействован встроенный в фен геркон. В авторском варианте применен импульсный блок питания, я применил трансформаторный БП. Всем мне нравится эта станция, но с моим паяльником: 60вт, 24в, с керамическим нагревателем, большое забегание и колебание температуры. При этом паяльники меньшей мощности, с нихромовым нагревателем имеют меньшие колебания. При этом мой паяльник, с описаной выше паяльной станцией от Михи-Псков, с прошивкой от Volu, поддерживает температуру с точность до градуса. Так что нужнен хороший алгоритм нагрева и поддержания температуры. В качестве эксперемента сделал ШИМ регулятор на таймере, управляющее напряжение подал с выхода усилителя термопары, отключение, включение от микроконтроллера, Колебание температуры сразу уменьшилось до нескольких градусов, это подтверждает что нужен правильный алгоритм управления. Внешний ШИМ это конечно порнография при наличии микроконтроллера, но хорошую прошивку пока не написали. Заказал другой паяльник если с ним не будет хорошей стабилизации, продолжу свои эксперементы с внешним ШИМ управлением, а может хорошая прошивка появится. Станцию собрал на 4 платах, соединяются между собой на разъемах.

Схема цифровой части устройсква представлена на рисунке, для наглядности показаны два МК: IC1 - PIC16F887, IC1(*) - PIC16F876. Другие МК подключаются аналогично, на соответствующие порты.

Для изменения контрасности нужно найти 67 байт, его значение "0х80" , для начала можно поставить "0х90". Значения должны быть от "0х80" до "0х9F".

По поводу дисплея 1110i (текст отображается зеркально), если не китай, а оригинал,открываем ЕЕПРОМ, ищем 75 байт, меняем его с A0 на A1.

Схемы на микроконтроллере, статьи и описания с прошивками и фотографиями для автомобиля.

Простой тахометр на микроконтроллере ATmega8

Тахометр применяется в автомобилях для измерения частоты вращения всяких деталей которые способны вращаться. Есть много вариантов таких устройств, я предложу вариант на AVR микроконтроллере ATmega8. Для моего варианта, вам также…

Читать полностью

Цветомузыка на микроконтроллере Attiny45 в авто

Эта цветомузыка, имея малый размер и питание 12В, как вариант может использоваться в авто при каких-либо мероприятиях. Первоисточник этой схемы Радио №5, 2013г А. ЛАПТЕВ, г. Зыряновск, Казахстан. Схема…

Читать полностью

Контроллер обогрева зеркал и заднего стекла

Позволяет управлять одной кнопкой раздельно обогревом заднего стекла и зеркал, плюс настраиваемый таймер отключения до полутора часов для каждого канала. Схема построена на микроконтроллере ATtiny13A. Описание работы:

Читать полностью

Диммер для плафона автомобиля

Почти во всех автомобилях есть управление салонным светом, которое осуществляется с помощью бортового компьютера или отдельной бортовой системой. Свет включается плавно, и гаснет также с некой задержкой (для…

Читать полностью

GSM сигнализация с оповещением на мобильник

Представляю очень популярную схему автомобильной сигнализации на базе микроконтроллера ATmega8. Такая сигнализация дает оповещение на мобильник админа в виде звонков или смс. Устройства интегрируется с мобильником с помощью…

Читать полностью

Моргающий стопак на микроконтроллере

Сделал новую версию моргающего стопака. Отличается алгоритм работы и схема управления, размер и подключение такое же. Возможно регулировать частоту моргания, длительность до перехода в постоянное свечение и скважность…

Читать полностью

ДХО плюс стробоскопы

Эта поделка позволяет стробоскопить светодиодными ДХО. Поделка имеет малый размер, управление всего одной кнопкой, широкие возможности настройки. Размер платы 30 на 19 миллиметров. С обратной стороны расположен клемник…

Читать полностью

Делаем и подключаем доводчик к сигнализации

Количества автомобилей с автоматическим стеклоподъемниками постоянно растет, и даже если в машине нет такого, многие делают его своими руками. Моей целю было собрать такое устройства и подключить его к…

Читать полностью

Светодиоды включаются от скорости

Получился «побочный продукт»: нужно было оттестить режим работы датчика скорости для проекта отображения передач на матрице 5х7, для этого собрал небольшую схемку. Схемка умеет включать светодиоды в зависимости…

Читать полностью

Цифровой тахометр на AVR микроконтроллере (ATtiny2313)

Тахометр измеряет частоту вращения деталей, механизмов и других агрегатах автомобиля. Тахометр состоит из 2-х основных частей — из датчика, который измеряет скорость вращения и из дисплея, где будет…

Читать полностью

Простой цифровой спидометр на микроконтроллере ATmega8

Спидометр это измерительное устройства, для определения скорости автомобиля. По способу измерения, есть несколько видов спидометра центробежные, хронометрические, вибрационные, индукционные, электромагнитные, электронные и напоследок спидометры по системе GPS.

Читать полностью

Плавный розжиг приборки на микроконтроллере

Эта версия немного отличается схемой: добавлена вторая кнопка настройки и убран потенциометр скорости розжига. Возможности: Два отдельных независимых канала. Для каждого канала три группы настраиваемых параметра: время задержки до начала…

Это устройство предназначено для измерения ёмкости аккумуляторов Li-ion и Ni-Mh , а также для заряда Li-ion аккумуляторов с выбором начального тока заряда.

Управление

Подключаем устройство к стабилизированному блоку питания 5в и током 1А (например от сотового телефона). На индикаторе в течении 2 сек отображается результат предыдущего измерения емкости "ххххmA/c" а на второй строке значение регистра OCR1A "S.xxx". Вставляем аккумулятор. Если нужно зарядить аккумулятор то кратко жмём кнопку ЗАРЯД, если нужно измерить ёмкость то кратко жмём кнопку ТЕСТ. Если нужно изменить ток заряда (значение регистра OCR1A) то долго(2 сек) жмем кнопку ЗАРЯД. Заходим в окно регулировки регистра. Отпускаем кнопку. Кратко нажимая на кнопку ЗАРЯД меняем по кругу значения (50-75-100-125-150-175-200-225) регистра, в первой строке показывается ток заряда пустого аккумулятора при выбранном значении (при условии что у вас в схеме стоит резистор 0,22 Ом). Кратко жмём кнопку ТЕСТ значение регистра OCR1A запоминаются в энергонезависимой памяти.
Если вы проделывали разные манипуляции с устройством и вам надо сбросить показания часов, измеренной ёмкости то долго жмём кнопку ТЕСТ (значение регистра OCR1A не сбрасываются). Как только заряд окончен подсветка дисплея отключается, для включения подсветки кратко нажмите кнопку ТЕСТ или ЗАРЯД.

Логика работы устройства следующая:

При подаче питания, на индикаторе отображается результат предыдущего измерения ёмкости аккумулятора и значение регистра OCR1A, хранящееся в энергонезависимой памяти. Через 2 секунды устройство переходит в режим определения типа аккумулятора по величине напряжения на клемах.

Если напряжение более 2В то это Li-ion аккумулятор и напряжение полного разряда составит 2,9В, иначе это Ni-MH аккумулятор и напряжение полного разряда составит 1В. Только после подключения аккумулятора доступны кнопки управления. Далее устройство ожидает нажатия кнопок Тест или Заряд. На дисплее отображается "_STOP". При нажатии кратко кнопки Тест подключается нагрузка через MOSFET.

Величина тока разряда определяется по напряжению на резисторе 5,1Ом и, каждую минуту суммируется с предыдущим значением. В устройстве используется кварц 32768Гц для работы часов.

На дисплее отображается текущая величина емкости аккумулятора "ххххmA/c" и тора разряда "А.ххх", а также время "хх:хх:хх"с момента нажатия кнопки. Показывается также анимированный значок разряда аккумулятора. По окончании теста для Ni-MH аккумулятора появляется надпись "_STOP", результат измерения отображается на дисплее "ххххmA/c" и запоминается.

Если аккумулятор Li-ion, то также результат измерения отображается на дисплее "ххххmA/c" и запоминается, но сразу включается режим заряда. На дисплее отображается содержимое регистра OCR1A "S.xxx". Показывается также анимированный значок заряда аккумулятора.

Регулировка тока заряда осуществляется с помощью ШИМ и ограничивается резистором 0,22Ом. Апаратно ток заряда можно уменьшить увеличив сопротивление 0,22Ом до 0,5-1Ом. В начале заряда ток плавно нарастает до значения регистра OCR1A или до достижения напряжения на клемах аккумулятора 4,22В (если аккумулятор был заряжен).

Величина тока заряда зависит от значения регистра OCR1A - больше значение - больше ток заряда. При превышении напряжения на клемах аккумулятора 4,22В значение регистра OCR1A уменьшается. Процесс дозаряда продолжается до величины регистра OCR1A равного 33, что соответствует току около 40 mA. На этом заряд заканчивается. Подсветка дисплея отключается.

Настройка

1. Подключаем питание.
2. Подключаем аккумулятор.
3. Подключаем вольтметр к аккумулятору.
4. Временными кнопками + и - (PB4 и PB5)добиваемся совпадения показания вольтметра на дисплее и на эталонном вольтметре.
5. Длительно нажимаем на кнопку ТЕСТ (2 сек), происходит запоминание.
6. Извлекаем аккумулятор.
7. Подключаем вольтметр к резистору 5,1Ом (по схеме около транзистора 09N03LA).
8. Подключаем регулируемый БП к клемам аккумулятора, выставляем на БП 4В.
9. Нажимаем кратко кнопку ТЕСТ.
10. Измеряем напряжение на резисторе 5,1Ом - U.
11. Высчитываем ток разряда I=U/5,1
12. Временными кнопками + и - (PB4 и PB5) устанавливаем на индикаторе"А.ххх" рассчитанный ток разряда I.
13. Длительно нажимаем на кнопку ТЕСТ (2 сек), происходит запоминание.

Устройство питается от стабилизированного источника напряжением 5 Вольт и током 1А. Кварц на 32768Гц предназначен для точного отсчета времени. Контроллер ATmega8 тактируется от внутреннего генератора частотой 8 МГц, также необходимо установить защиту от стирания EEPROM соответствующими битами конфигурации. При написании управляющей программы были использованы обучающие статьи с данного сайта.

Текущие значения коэффициентов напряжения и тока (Ukof . Ikof) можно увидеть если подключить дисплей 16х4 (16х4 предпочтительно для отладки) на третьей строке. Или в Ponyprog если открыть файл прошивки EEPROM (считать с контроллера EEPROM).
1 байт - OCR1A , 2 байт - I_kof, 3 байт - U_kof, 4 и 5 байт результат предыдущего измерения емкости.

Видео работы прибора:

Бывает идешь мимо припаркованных машин, и замечаешь краем глаза, что кто то уже давно, судя по тусклому свечению ламп, забыл свет выключить. Кто то и сам так попадал. Хорошо когда есть штатный сигнализатор не выключенного света, а когда нету поможет вот такая поделка: Незабывайка умеет пищать, когда не выключен свет и умеет пропикивать втыкание задней передачи.

Схема цифрового индикатора уровня топлива обладает высокой степенью повторяемости, даже если опыт работы с микроконтроллерами незначителен, поэтому разобраться в тонкостях процесса сборки и настройки не вызывает проблем. Программатор Громова – это простейший программатор, который необходим для программирования avr микроконтроллера. Программатор Горомова хорошо подходит как для внутрисхемного, так и для стандартного схемного программирования. Ниже приведена схема контроля индикатора топлива.

Плавное включение и выключение светодиодов в любом режиме (дверь открыта, и плафон включен). Так же авто выключение через пять минут. И минимальное потребление тока в режиме ожидания.

Вариант 1 - Коммутация по минусу. (с применением N-канальных транзисторов) 1) "коммутация по минусу", т.е такой вариант при котором один питающий провод лампы соединен с +12В аккумулятора (источника питания), а второй провод коммутирует ток через лампу тем самым включает ее. В данном варианте будет подаваться минус. Для таких схем нужно применять N-канальные полевые транзисторы в качестве выходных ключей.

Сам модем небольшого размера, недорог, работает без проблем, четко и быстро и вообще нареканий нет к нему. Единственный минус для меня был, это необходимость его включать и выключать кнопкой. Если его не выключать, то модем работал от встроенного аккумулятора, который в итоге садился и модем снова было нужно включать.

Принцип работы прост: привращении крутилки регулируется громкость, при нажатии - выключение-включение звука. Нужно для кар писи на винде или андройде

Изначально в Lifan Smily (да и не только) режим работы заднего дворника - единственный, и называется он «всегда махать». Особенно негативно воспринимается такой режим в наступивший сезон дождей, когда на заднем стекле собираются капли, но в недостаточном для одного прохода дворника количестве. Так, приходится либо слушать скрип резины по стеклу, либо изображать робота и периодически включать-выключать дворник.

Немного доработал схему реле времени задержки включения освещения салона для автомобиля Форд (схема разрабатывалась для вполне конкретного автомобиля, как замена штатного реле Ford 85GG-13C718-AA, но была успешно установлена в отечественную "классику").

Уже не первый раз проскакивают такие поделки. Но почему-то люди жмуться на прошивки. Хотя в большинстве своём они основаны на проекте elmchan "Simple SD Audio Player with an 8-pin IC". Исходниник не открывают аргументируя, что пришлось исправлять проект, что в у меня качество лучше… и т.д. Короче взяли open source проект, собрали, и выдаёте за своё.

Итак. Микроконтроллер Attiny 13- так сказать сердце данного устройства. С его прошивкой долго мучился, никак не мог прошить.Ни 5ю проводками через LPT, ни прогромматором Громова. Компьютер просто не видит контроллер и все.

В связи с нововведениями в ПДД, народ стал думать о реализации дневных ходовых огней. Один из возможных путей это включение ламп дальнего света на часть мощности, об этом и есть данная статья.

Это устройство позволит ближнему свету автоматически включиться при начале движения и регулирует напряжение на лампах, ближнего света, в зависимости от скорости с которой вы едите. Так же, это послужит более безопасному движению и продлит срок службы ламп.


Аккумуляторы сегодня очень распространены, но зарядные устройства для них, имеющиеся в продаже, как правило, не универсальны и слишком дороги. Предлагаемое устройство предназначено для зарядки аккумуляторных батарей и отдельных аккумуляторов (в дальнейшем используется термин "батарея") с номинальным напряжением 1,2...12,6 В и током от 50 до 950 мА. Входное напряжение устройства - 7...15 В. Ток потребления без нагрузки - 20 мА. Точность поддержания тока зарядки - ±10 мА. Устройство имеет ЖКИ и удобный интерфейс для установки режима зарядки и наблюдения за её ходом.

Реализован комбинированный метод зарядки, состоящий из двух этапов. На первом этапе батарею заряжают неизменным током. По мере зарядки напряжение на ней растёт. Как только оно достигнет заданного значения, наступит второй этап - зарядка неизменным напряжением. На этом этапе зарядный ток постепенно снижается, а на батарее поддерживается заданное напряжение. Если напряжение по какой-либо причине упадёт ниже заданного, автоматически вновь начнётся зарядка неизменным током.

Схема зарядного устройства изображена на рис. 1.

Рис. 1. Схема зарядного устройства

Его основа - микроконтроллер DD1. Он тактирован от внутреннего RC-генератора частотой 8 МГц. Использованы два канала АЦП микроконтроллера. Канал ADC0 измеряет напряжение на выходе зарядного устройства, а канал ADC1 - зарядный ток.

Оба канала работают в восьмиразрядном режиме, точности которого для описываемого устройства достаточно. Максимальное измеряемое напряжение - 19,9 В, максимальный ток - 995 мА. При превышении этих значений на экране ЖКИ HG1 появляется надпись "Hi".

АЦП работает с образцовым напряжением 2,56 В от внутреннего источника микроконтроллера. Чтобы иметь возможность измерять большее напряжение, резистивный делитель напряжения R9R10 уменьшает его перед подачей на вход ADC0 микроконтроллера.

Датчиком зарядного тока служит резистор R11. Падающее на нём при протекании этого тока напряжение поступает на вход ОУ DA2.1, который усиливает его приблизительно в 30 раз. Коэффициент усиления зависит от соотношения сопротивлений резисторов R8 и R6. С выхода ОУ напряжение, пропорциональное зарядному току, через повторитель на ОУ DA2.2 поступает на вход ADC1 микроконтроллера.

На транзисторах VT1-VT4 собран электронный ключ, работающий под управлением микроконтроллера, формирующего на выходе ОС2 импульсы, следующие с частотой 32 кГц. Коэффициент заполнения этих импульсов зависит от требуемых выходного напряжения и зарядного тока. Диод VD1, дроссель L1 и конденсаторы С7, С8 преобразуют импульсное напряжение в постоянное, пропорциональное его коэффициенту заполнения.

Светодиоды HL1 и HL2 - индикаторы состояния зарядного устройства. Включённый светодиод HL1 означает, что наступило ограничение выходного напряжения. Светодиод HL2 включён, когда идёт нарастание зарядного тока, и выключен, когда ток не изменяется или падает. В ходе зарядки исправной разряженной батареи сначала будет включён светодиод HL2. Затем светодиоды станут поочерёдно мигать. О завершении зарядки можно судить по свечению только светодиода HL1.

Подборкой резистора R7 устанавливают оптимальную контрастность изображения на табло ЖКИ.

Датчик тока R11 можно сделать из отрезка высокоомного провода от спирали нагревателя или от мощного проволочного резистора. Автор использовал отрезок провода диаметром 0,5 мм длиной около 20 мм от реостата.

Микроконтроллер ATmega8L-8PU можно заменить любым из серии ATmega8 с тактовой частотой 8 МГц и выше. Полевой транзистор BUZ172 следует установить на теплоотвод с площадью охлаждающей поверхности не менее 4 см 2 . Этот транзистор можно заменить другим p-канальным с допустимым током стока более 1 А и малым сопротивлением открытого канала.

Вместо транзисторов КТ3102Б и КТ3107Д подойдёт и другая комплементарная пара транзисторов с коэффициентом передачи тока не менее 200. При правильной работе транзисторов VT1-VT3 сигнал на затворе транзистора должен быть аналогичен показанному на рис. 2.

Рис. 2. График сигнала на затворе

Дроссель L1 извлечён из компьютерного блока питания (он намотан проводом диаметром 0,6 мм).

Конфигурация микроконтроллера должна быть запрограммирована в соответствии с рис. 3. Коды из файла V_A_256_16.hex следует занести в память программ микроконтроллера. В EEPROM микроконтроллера должны быть записаны следующие коды: по адресу 00H - 2СН, по адресу 01H - 03H, по адресу 02H - 0BEH, по адресу 03H -64H.

Рис. 3. Программирование микроконтроллера

Налаживание зарядного устройства можно начинать без ЖКИ и микроконтроллера. Отключите транзистор VT4, а точки подключения его стока и истока соедините перемычкой. Подайте на устройство напряжение питания 16 В. Подберите резистор R10 таким, чтобы напряжение на нём находилось в пределах 1,9...2 В. Можно составить этот резистор из двух, соединённых последовательно. Если источника напряжения 16 В не нашлось, подайте 12 В или 8 В. В этих случаях напряжение на резисторе R10 должно быть соответственно около 1,5 В или 1 В.

Вместо батареи подключите к устройству последовательно амперметр и мощный резистор или автомобильную лампу. Изменяя напряжение питания (но не ниже 7 В) или подбирая нагрузку, установите ток через неё равным 1 А. Подберите резистор R6 таким, чтобы на выходе ОУ DA2.2 было напряжение 1,9...2 В. Как и резистор R10, резистор R6 удобно составить из двух.

Отключите питание, подключите ЖКИ и установите микроконтроллер. К выходу устройства присоедините резистор или лампу накаливания 12 В на ток около 0,5 А. При включении устройства на ЖКИ будут выведены напряжение на его выходе U и ток зарядки I, а также напряжение ограничения Uz и максимальный ток зарядки Iz. Сравните значения тока и напряжения на ЖКИ с показаниями образцовых амперметра и вольтметра. Вероятно, они будут различаться.

Выключите питание, установите перемычку S1 и вновь включите питание. Для калибровки амперметра нажмите и удерживайте кнопку SB4, а кнопками SB1 и SB2 установите на ЖКИ значение, ближайшее к показываемому образцовым амперметром. Для калибровки вольтметра нажмите и удерживайте кнопку SB3, а кнопками SB1 и SB2 установите на ЖКИ значение, равное показываемому образцовым вольтметром. Не выключая питания, снимите перемычку S1. Калибровочные коэффициенты будут записаны в EEPROM микроконтроллера для напряжения по адресу 02H, а для тока - по адресу 03H.

Выключите питание зарядного устройства, установите на место транзистор VT4, а к выходу устройства подключите автомобильную лампу на 12 В. Включите устройство и установите Uz=12 В. При изменении Iz должна плавно меняться яркость свечения лампы. Устройство готово к работе.

Требуемый зарядный ток и максимальное напряжение на батарее устанавливают кнопками SB1 "▲", SB2 "▼", SB3 "U", SB4 "I". Интервал изменения зарядного тока - 50...950 мА с шагом 50 мА. Интервал изменения напряжения - 0,1...16 В с шагом 0,1 В.

Для изменения Uz или Iz нажмите и удерживайте соответственно кнопку SB3 или SB4, ас помощью кнопок SB1 и SB2 установите требуемое значение. Через 5 с после отпускания всех кнопок установленное значение будет записано в EEPROM микроконтроллера (Uz - по адресу 00H, Iz - по адресу 01H). Следует иметь в виду, что удержание кнопки SB1 или SB2, нажатой более 4 с, увеличивает скорость изменения параметра приблизительно в десять раз.

Программу микроконтроллера можно скачать .


Дата публикации: 25.09.2016

Мнения читателей
  • Олег / 19.05.2018 - 21:49
    Очень прошу, скиньте файл для прошивки eeprom на эл.почту [email protected] Больше месяца тужусь, не выходит цветок!!!
  • саша / 19.01.2018 - 19:10
    Народ,кто нибудь собирал данный девайс!
  • Юрий / 19.01.2018 - 18:35
    Вопро к автору.Вывод 1 микропроцессора висит в воздухе.Это не опечатка.