Зарядное устройство для акб на микроконтроллере. Зарядное устройство для автомобильных аккумуляторов на Atmega8

Давно хотелось изготовить автоматическое ЗУ, т.к. автомобиль находится далеко от дома и невозможен постоянный контроль за зарядом. После многократного повторения подобных устройств пришлось отказаться от традиционного транзисторного управления током заряда, т.к. трудно добиться достаточной надежности ЗУ. В результате родилось данное устройство. Недостатки ступенчатого регулирования окупились отсутствием вентиляторов и громоздких радиаторов.

Максимальный ток заряда определяется мощностью трансформатора и собственно тиристорами + диодный мост. Алгоритм заряда можно при желании изменять самостоятельно (исходник имеется). После включения ЗУ и нажатия на кнопку «Разр» начинается разряд (ток определяется мощностью лампы фары). По достижении напряжения ниже 10,2в ЗУ переходит в режим заряда. Алгоритм заряда: 10 сек заряд максимальным током (15А), 20 сек разряд током 0,6А при включенном т.S3 MAX, 30 сек заряд номинальным током(6А), 20 сек разряд током 0,6А и так далее. По достижении АКБ напряжения 13,8в ЗУ переходит в режим дозаряда, что исключает интенсивное кипение и нагрев аккумулятора. Основной ток заряда уменьшается до 1,5-0,5А время максимального тока уменьшается до 2 сек, а ток разряда – до 0,1А. Когда АКБ зарядится до напряжения 14,8в ЗУ перейдет в режим хранения, если тумблер установить в положение «Дес/Ручн» то ЗУ не переходит в режим хранения и требуется отключение вручную. Если т. «Дес/Ручн» включить до включения устройства, то ЗУ перейдет в ручной режим и регулировка тока осуществляется ступенчато переключателем обмоток трансформатора. После установки т. «Дес/Ручн» в нижнее положение ЗУ переходит в автоматический режим. Если при включении ЗУ кнопку «Разр» удерживать нажатой, то устройство перейдет в режим тренировки АКБ (желтый светодиод)(3 раза разряд-заряд) и затем переход на хранение. В режиме хранения при снижении напряжения на АКБ ниже 12,6В включается ЗУ и дозарядится АКБ и т.д. циклично. Об окончании заряда свидетельствует загорание синего светодиода.

Все силовые элементы установлены на одном радиаторе и не нагреваются выше 50 градусов. Данное устройство не является «доктором», однако при постоянном использовании продлевает срок службы АКБ. При эксплуатации данного устройства наблюдалось восстановление емкости засульфатированной батареи (время разряда 5,5часов вместо 3,5часов до тренировки).

При налаживании устройства МК не устанавливается. Перемычками подаем 5в поочередно на выхода и проверяем работоспособность. Резисторами R17, R18 устанавливаем токи разряда 0.6А и 0,1А соответственно. Особое внимание необходимо уделить настройке компаратора R25 -на схеме в левом верхнем углу пересчет. При напряжении на АКБ 13.8в напряжение на делителе д.б. 1.97в. Некоторые трудности могут возникнуть из-за разброса параметров элементов делителя, поэтому нужно экспериментировать. При правильной настройке компаратора АКБ отключается вовремя и дозаряда не требует, при этом плотность электролита максимальна.

Реле типа TIANBO 15A, резистор R25 типа СП5. Трансформатор 250вт. Вторичная обмотка на ток до 15А, отводы начиная с 13в через каждые 0.7-1в, у меня получилось от каждого витка. На печатной плате реле К1 отсутствует (защита от пропадания сети) т.к. в оригинале реле питается от сети. Данное устройство повторялось неоднократно и работает не один год. Ранее ЗУ исполнялось на транзисторах, что ограничивало максимальный ток заряда.

Скачать прошивку, исходник ASM и файл печатной платы LAY вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК PIC 8-бит

PIC16F628A

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VT1 Биполярный транзистор

КТ972А

1 можно с буквой Б В блокнот
VT2 Биполярный транзистор

КТ819А

1 можно с любым буквенным индексом В блокнот
1 Биполярный транзистор

КТ3102

1 В блокнот
Оптопара

MOC3052M

3 В блокнот
TS1 Тиристор & Симистор

ТС122-25-12

1 В блокнот
TS2 Тиристор & Симистор ТС122-15 1 В блокнот
TS3 Тиристор & Симистор

ТС106-10-2

1 В блокнот
D3, D5-D9, D11-D14 Выпрямительный диод

1N4007

10 В блокнот
D4 Диод

Д242

1 можно любой другой 10 Ампер В блокнот
VDD Выпрямительный мост KBK25B 1 или любой другой на 25 Ампер В блокнот
VD3 Светодиод C535A-WJN 1 или любой другой белый В блокнот
VD4-VD6 Светодиод

АЛ307В

3 или любой другой зеленый В блокнот
VD7 Светодиод

АЛ307А

1 или любой другой красный В блокнот
VD8 Светодиод C503B-BAN 1 или любой другой синий В блокнот
VD9 Светодиод

АЛ307Е

1 или любой другой желтый В блокнот
VD10 Стабилитрон

КС182А

1 В блокнот
C1, C4 470 мкФ 25 В 2 В блокнот
C3 Конденсатор 0.1 мкФ 1 В блокнот
C5, C6 Электролитический конденсатор 100 мкФ 25 В 2 В блокнот
C7 Электролитический конденсатор 47 мкФ 25 В 1 В блокнот
R1-R3 Резистор

20 Ом

3 В блокнот
R4, R10, R16, R17 Резистор

1.5 кОм

4 В блокнот
R5-R8, R11, R15, R20, R21 Резистор

10 кОм

8 В блокнот
R9 Резистор

200 Ом

1 В блокнот
R12-R14 Резистор

750 Ом

3 В блокнот
R18, R19 Подстроечный резистор 10 кОм 2 В блокнот
R22 Резистор

300 Ом

1 В блокнот
R24 Резистор

100 Ом

1

Зарядное устройство из компьютерного БП

Если у вас лежит старый блок питания от компьютера, ему можно найти легкое применение,особенно если вас интересует зарядное устройство для автомобильного аккумулятора своими руками .

Внешний вид данного устройства представлен на картинке.Переделку легко осуществить, и позволяет заряжать аккумуляторы емкостью 55...65 А*ч

т.е практически любые батареи.

Схема плавного выключения дальнего света

Схема плавного выключения дальнего света

В ночное время, при разъезде двух автомобилей, переключение дальнего света фар своей машины на ближний в первый момент водитель воспринимает, как резкое уменьшение освещенности дороги, что заставляет его напрягать зрение и ведет к быстрому утомлению. Встречным водителям также труднее ориентироваться в обстановке при резких перепадах яркости света спереди. Это в конечном счете снижает безопасность движении.

Фильтр для магнитолы своими руками

Фильтр для магнитолы своими руками

Итак, решил собрать фильтр от ВЧ помех. Понадобился он для питания автомагнитолы от импульсного блока питания в одной недавней конструкции. Кучу их перепробывал, что только не делал - эффект слабый. Ставил сначала большие емкости в батарею соединял по 3 конденсатора на 3300мкф 25вольт - не помогало. При питании от импульсного БП в усилители всегда свист , ставил дроссели большие, по 150 витков, порой на Ш-образных и ферритовых магнитопровадах - бесполезно.

схема управления стоп-сигналами своими руками

Устройство управления стоп-сигналами автомобиля

Данное устройство которое можно непокупать, а легко собрать своими руками предназначено для следующего, оно управляет лампами стоп-сигналов автомобиля или мотоцикла следующим образом: при нажатии на педаль тормоза лампы работают в импульсном режиме (происходит нескольковспышек ламп в течение нескольких секунд), а затем лампы переходят в обычный режим непрерывного свечения. Таким образом, при срабатывании фонари стоп-сигналов значительно эффективнее привлекают к себе внимание водителей других автомобилей.

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель , а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Схема зарядки автомобильного аккумулятора

Зарядка для автомобильного аккумулятора своими руками

Цены на современные зарядки для автомобильных аккумуляторов постоянно растут изза неспадающего на них спроса. На нашем сайте выложены уже несколько схем таких устройств.И представляю вашему вниманию еще одно устройство: Схема зарядки для автомобильного акб на 12 Вольт

Схема простого зарядного для аккумулятора авто

Схема простого зарядного для аккумулятора авто

В старых телевизорах, которые работали еще на лампах а не микрочипах, есть силовые трансформаторы ТС-180-2

В статье приводится как сделать из такого трансформатора простое зарядное устройство для аккумулятора своими руками

Читаем

Самодельная зарядка для свинцовых аккумуляторов

Самодельная зарядка для свинцовых аккумуляторов

Бродя по интернету,наткнулся на схему несложного мощного зарядного устройства для автомобильного аккумулятора .

Фотографию данного устройства вы видите на фото слева,для увеличения просто кликните на него.

Почти все используемые мной радиодетали, от старой бытовой техники, все собрано по схеме, из деталей которые тогда были у меня в наличии. Трансформатор ТС-180, транзистор П4Б заменил на П217В, диод Д305 заменил на Д243А, немного позже, на радиатор транзистора V5 для дополнительно охлаждения я установил вентилятор от старого компьютерного процессора, транзистор V4, тоже закрепил на небольшой радиатор. Все элементы расположены на металлическом шасси, скреплены винтами и пайкой с помощью навесного монтажа, все это вместе закрыто металлическим кожухом, который для демонстрации сейчас снят.

В интернете существует огромное количество схем зарядных устройств (ЗУ) для автомобильных аккумуляторов. От простейших до очень сложных. В нашем случае пойдет речь о ЗУ сделанном на микроконтроллере (МК) Atmega8. Использование МК в отличие от схемы на транзисторах позволяет внедрить очень богатый функционал для ЗУ. К примеру в данном зарядном я решил внедрить следующие функции.

1. Простота в управлении. Достаточно одного энкодера. Повернул по часовой стрелке - заряд включился. Вращением по часовой стрелке или против часовой выбирается ток заряда. Энкодер решил выбрать с тактовым нажатием. Нажимая на него можно будет войти в меню с настройками дополнительных функций.

2. Ток заряда будет до 5А. Хотя у меня в автомобиле стоит батарея 85А/ч мне для заряда хватит и 5А, просто на заряд уйдет немного больше времени. Однако при необходимости можно будет без глобальных переделок и перепрошивки МК увеличить ток заряда до 10А.

3. Менять ток заряда можно будет с шагом до 0.1А. Минимальный ток можно будет выбрать до 0.1А. Это значит можно заряжать и батареи маленькой емкости. Причем если энкодер вращать чуть быстрее, шаг увеличения/уменьшения тока заряда будет работать в пределах 0.5 А.

4. Батарея будет заряжаться до напряжения 14.4 вольт.

5. На дисплей будет выводится информация о текущем токе заряда и напряжении на батарее, так же будет работать индикатор заряда батареи, примерно как в мобильном телефоне. Мне показалось что так будет более наглядно.

6. Обязательно должна быть защита от замыкания клемм ЗУ. К примеру если закоротить клеммы между собой и при этом включить зарядник, то разумеется это не должно принести ему вред. И вообще пока не будет подключена батарея на клеммах не будет никакого напряжения. Так же если по ошибке была подключена батарея не с соблюдением полярности, включение заряда будет невозможно. Вся эта защита будет реализована программно аппаратным способом.

7. Заряд батареи должен быть полностью автоматизирован. Это вполне возможно, так как будет использоваться МК. Автоматизация процесса заряда должна исключать участие человека. Это значит подключил батарею, выбрал ток заряда и на этом все. Все остальное должно сделать само зарядное. А именно, поддержание выбранного зарядного тока в процесе заряда. Если батарея неисправна и заряд дальше не возможен, батарея должна быть автоматически отключена, в противном случае она будет просто бесконечно кипеть, а нам это не надо.

8. Показалось, что удобна будет функция "хранение батареи зимой". Как ни крути, абсолютно любая батарея в природе имеет свой внутренний саморазряд. Это значит, что если просто оставить без присмотра батарею на определенный срок, то из-за тока саморазряда она разрядится, что в итоге приведет к сульфатации пластин. А для батареи это смерть. Причем время саморазряда и сульфатации не такое уж и большое. Порой достаточно пару месяцев. Чтобы этого не произошло и будет внедрена функция "хранение батареи зимой". Работает это просто, подключаем зарядник к батарее, причем батарею не нужно вынимать из автомобиля. Далее ЗУ будет раз в пол часа смотреть какое же напряжение на батарее. Если напряжение упало ниже нормы, включится автоматический заряд, после окончания цикла заряда, ЗУ опять перейдет в режим контроля напряжения на батарее. Причем порог срабатывания выставляет сам пользователь в меню и силу тока тоже можно выбрать в меню. Лично я для себя установил порог 12.5 вольт и сила тока заряда 0.5А. Зярадка малым током более эффективна чем большими токами.

9. Возможно будет полезна функция "продолжение заряда после отключения электричества". Хотя такое совпадение может произойти раз в 150 лет, тем не менее эта функция есть. Зарядное всегда "помнит", что включен процесс заряда и если произойдет отключение/включение элетричества, заряд просто продолжится дальше. В любом случае все функции можно отключить или включить по выбору в меню. Если отключить все функуции, то зарядное просто станет "обычным зарядным" которое зарядит батарею и выключится.

10. Ну и напоследок в ЗУ будет работать программный таймер. Таймер будет постоянно тикать вперед 0..1,2 и так далее. Если батарея заряжается, а это видно будет по тому, как на ней будет постепенно подниматься напряжение до 14.4 вольта. Так вот, как только на батарее напряжение чуть поднялось, таймер сразу сбросится в 0 и продолжить снова считать 0...1,2... Но если батарея неисправна или старая, или не совсем правильна плотность электролита, то при определенном пороге заряд дальше невозможен. И этот порог может быть ниже 14.4 вольта. Как быть? В таком случае таймер перестанет сбрасываться. И дотикав до определенного момента, он попросту выключит заряд с сообщением на дисплей. Дальше кипятить батарею не имеет смысла. Таймер можно выключить в меню или включить, задав диапазон тикания от 30 мин до 3х часов. На дисплее можно будет видеть как таймер будет тикать и сбрасываться время от времени, если заряд протекат в штатном режиме.

Теперь перейдем к обсуждению схемы зарядника.

Блок питания.
В данном случае будем использовать любой импульсный блок питания (ИБП). Выходное напряжение от 16 до 20 вольт. Так как ток заряда будет до 5А, то выходной ток ИПБ должен быть с запасом где-то до 6А. Я использовал ИПБ MEAN WELL RS-75-15 у которого выходное напряжение 15 вольт, но в блоке есть подстроечный резистор которым можно поднять напряжение до 16.5 вольт. Преимущество ИПБ в том что он легкий, компактный и имеет уже втроенную защиту от повышенных токов, замыканий и пр. Поэтому об этом уже не надо особо заботиться. Впринципе подходит любой другой ИПБ. Хоть с ноутбука. Если в вашем ИПБ ток менее 5А, его тоже можно использовать, просто нужно следить за тем чтоб не выставлять ток заряда более чем может выдать ИПБ. Трансформатрный блок питания в нашем случае не подходит. Зарядное на трансформаторе это отдельная тема и отдельная статья. Итак схема питания будет выглядеть примерно так.

Конденсатор на 1000uF в принципе можно не ставить так как он уже установлен в импульсном блоке питания на выходе, но если установить то хуже не будет. Конденсатор С2 лучше если будет электролит, но я поставил керамический smd. Стабилизатор 7805 нужен чтобы питать МК, дисплей LCD и прочую обвязку.

Теперь подключим батарею и полевой транзистор.



Как видим, все просто. Транзистором будем регулировать силу тока через батарею. Реле К1 будет брать на себя роль защиты, будет включаться только тогда, когда батарея подключена и подключена правильно. Цементный резистор R18 выполняет роль шунта. При токе в 5А на нем будет напряжение 0.5 вольт. Это напряжение усилим и подадим на АЦП МК, так МК будет знать какой ток в цепи заряда и это значение можно будет вывести на дисплей. Теперь пора подключать МК к схеме.

Как видим схема немного усложнилась. Но не сильно. К выводу PB0 подключим реле, любое реле на 12V, контакты которого должны выдержать ток в 5А. Последовательно с реле надо подключить гасящий резистор примерно в 200 Ом, так как питаться то реле у нас будет от напряжения 16-20 вольт. Параллельно катушке реле надо установить защитный диод (любой, поставил LL4148) , без диода может пробиться транзистор VT4. VT4 может быть любой тип npn, использовал MMBT4401LT1 .

К выводам PD7, PC1, PC0 подключен энкодер. Использовался этот или этот . На выводы к которым подключен энкодер необходимо подключить конденсаторы 0.1 uF и подтягивающие резисторы по 10к. Это уменьшит контактов.

Дисплей использовался на две строки по 16 символов. Дисплей так же имеет встроенный русский шрифт. Если подключить дисплей без русских символов, на экране будут крякозябры. Так как у МК Atmega8 не сильно много ног, то дисплей подключил по 4х битной шине. Выводы дисплея DB3-DB0 не используются.

К выводу МК PB2 подключен диод шоттки BAT54S , два конденсатора 0.1uF и резистор 100 Ом. Зачем это нужно? Дело в том что в схеме используется операционный усилитель ОУ LM358 который не "rail to rail". В таких ОУ без отрицательного напряжения питания на минусовом выводе питания, на выходе ОУ никогда не будет 0 вольт. Поэтому эта цепочка элементов подключенная к выводу PB2 создает отрицательное напряжение где то -4V для питания ОУ. Для того чтобы цепочка на выводе PB2 заработала и генерировала -4V, на нее необходимо подать ШИМ сигнал со скважностью 50%. Таким образом на выводе PB2 всегда присутствует ШИМ с частотой 62.5 кГц.

На выводе PB3 так же всегда присутствует ШИМ, но скважность сигнала в данном случае от 0 до 100% уже регулируется вращением энкодера. Резистор R18 и конденсатор С11 составляют интегрирующую цепочку сглаживают ШИМ в постоянное напряжение. Резисторы R19 и подстроечный R20 являются делителем напряжения. Как настроить R20? Подключаем мультиметр к выводу PB3 и вращаем энкодер до тех пор, пока прибор не покажет 2.5 Вольта. Далее вращаем подстроечный резистор R20 так чтобы на неинвертирующем выводе ОУ было напряжение 0.25 вольта. На этом настройка R20 закончена.

Как работает регулировка и управление транзистором? Предположим что на неинвертирующем выводе ОУ (+) 0.5 вольт. Одно из свойств ОУ это то, что он стремиться к тому, чтоб уровнять разность потенциалов между его двумя входами. Делает это он используя свой выход, повышая или понижая на нем напряжение. Итак на выводе (+) 0.5 вольт, а на выводе (-) 0 вольт. Что дальше? ОУ сразу же начнет повышать напряжение на выходе, который подключен к затвору транзистора IRF540. Транзистор начинает открываться. Через батарею, транзистор и шунт начинает течь ток. Текущий ток вызывает падение напряжение на шунте R18. ОУ будет открывать транзистор до тех пор пока на шунте не будет напряжение 0.5 вольт. Напряжение с шунта подается через R13 на вывод (-). Как только на выводе (-) будет 0.5 вольта (такое же как и на выводе (+)), ОУ перестанет открывать транзистор. При этом ток заряда будет равен 5А.

Если энкодером уменьшить напряжение на выводе (+) до 0.25 вольта, ОУ уменьшит напряжение на затворе транзистора до такой величины, чтоб на выводе (-), так же стало 0.25 вольта, данное значение соответствует току заряда в 2.5А. Получается что регулировка тока заряда осуществляется аппаратным способом с помощью ОУ. А это очень хорошо, так как ОУ никогда не зависнет и скорость раекции мгновенная. Данная схема регулировки является обычным линейным источником тока. Удобство данной схемы в том что она является простой, но минус в том, что вся разность напряжения между импульсным блоком питания и напряжением на батарее выделяется в виде тепла на транзисторе.

К примеру ИПБ выдает 20 вольт, напряжение на батарее в начале ее заряда 12 вольт, а ток заряда 5А. Какая мощность выделиться на трназисторе? (20-12)*5=40 Вт. 40Вт это очень много!!! Нужен здоровенный радиатор и пять вентиляторов. Так никуда не годиться. Хотя транзистор IRF540 выдержит и 150 ватт, разогревать транзистором зарядник нет смысла. Как уменьшить выделение тепла? Можно понизить напряжение ИПБ например до 16 вольт. Тогда (16-12)*5 =20 Вт в два раза меньше уже лучше. Но нагрев можно сделать еще меньше до 5 ватт и менее. Каким образом?

В ИПБ подобного типа как MEAN WELL RS-75-15 всегда есть подстроечный резистор, которым можно регулировать напряжение на выходе в пределах 10%. Это значит от 13.5 до 16.5, в моем случае получилось от 13 до 17 вольт. Можно выпаять из ИПБ подстроечник, а вместо него впаять вывод МК, таким образом мы сможем с помощью МК регулировать напряжение на выходе ИПБ, это позволит снизить выделение тепла на транзисторе до минимума. К примеру если на батарее 12 вольт, понижаем напряжение до 13 вольт и получаем (13-12)*5=5 Вт тепла на транзисторе, лучше чем 40. Итак модернезируем схему


В выводу PB1 подключаем оптрон PC123 или подобный ему. На выводе PB1 так же всегда дежурит шим сигнал который интегрируется цепочкой R22 и C13. В ИБП выпаиваем подстроечный резистор и вместо него впаиваем обычный на 1.2 кОм. Вот теперь МК может управлять напряжением на выходе ИБП через оптрон. Когда оптрон выключен напряжение на выходе ИБП минимально, когда включен, резистор R23 шунтируется на землю, напряжение поднимается. Плавно закрывая/открывая оптрон с помощью ШИМ сигнала на выводе РВ1, плавно регулируем напряжение на выходе ИБП.

Чтабы знать когда и на сколько регулировать напряжение на выходе ИБП, надо знать сколько вольт вообще на силовом транзисторе. Нам то надо напряжение на выходе ИБП понизить настолько, чтоб разница между напряжением на батарее и напряжением на выходе ИБП была допустимо минимально. Для этого выводом РС2 используя АЦП МК измеряем напряжение на стоке транзистора. Это делается с помощью делителя R9 и R10. Теперь зная необходимые параметры, программа в МК будет сама контролировать скважность ШИМ на выводе РВ1.

Теперь осталось совсем немного. Это измерять ток в цепи заряда и выводить его на дисплей. И еще осталось измерить напряжение на батарее и так же вывести его на дисплей.

Напряжение на батарее измеряем дифференциальным способом. Значение снимаем с вывода РС5. Резисторы R5 и R6 должны быть ровно по 3кОм, а резисторы R2 и R4 по 1кОм, желательно точность не менее 1%, у меня таких не было поэтому R4 установил подстроечным. Суть в том, что при таких номиналах резисторов отношение напряжений на входах ОУ и на его выходе составляет 3:1. При изменении напряжения от 0 до 15 вольт на батарее, на выходе ОУ напряжение будет меняться от 0 до 5 вольт. Для настройки данной цепочки необходимо вместо батареи подключить 14.4 вольта например с лабораторного блока питания. Далее вращаем подстроечник R4 чтоб на дисплее LCD тоже было 14.4 вольта. Настройка цепи измерения напряжения на этом закончена.

Ток измеряется через падение напряжения на шунте, роль которого играет обычный цементный резистор. Ток у нас от 0 до 5А. Напряжение на шунте соответсвенно изменяется от 0 до 0.5 вольт. Значения резисторов R16 и R17 подобраны так, чтоб на выходе ОУ значение напряжения было от 0 до 5 вольт. Отображение тока заряда настраиваем по следующей цепочке. Подключаем батарею и делаем ток в 2.5 А. Параллельно батарее подключаем лампочку на 12 вольт. Батарею отключаем, а лампочку оставляем. Убеждаемся что ток равен 2.5 ампера. Если на шунте напряжение будет 0.25 вольт, значит ток равен 2.5А. если это не так, вращаем энкодер пока на шунте не будет 0.25 вольт. Теперь вращаем подстроечник R17 чтоб на дисплее отображался ток в 2.5А. Настройка отображения тока на этом закончена.

Что можно было бы упростить? Например если нет желания возиться с делителем напряжения в ИБП, то все что припаяно к ноге МК РВ1, можно выкинуть из схемы. Но все остальное должно быть на своих местах. Но в таком случае вся разница напряжения между батареей и на выходе ИБП высадится в виде тепла на силовом транзисторе. В таком случае радиатор берем побольше не жалеем.

Если нужен ток заряда до 10А, параллельно шунту припаиваем такой же шунт значением 0.1 Ом. Реле берем с контактами выдерживающем до 10А и параллельно транзистору IRF540 припаиваем еще один такой же. Транзисторы прикручиваем на здоровенный радиатор и вперед, делаем тест. Единственное, значение тока на диспле надо в уме умножать на 2. Если дисплей покажет 5А, на самом деле это уже будет 10А. Лично я сам так не делал, но в теории должно работать.

В конце концов итоговая схема будет иметь следующий вид:


Ничего не видно согласен, поэтому скачиваем схему отсюда .

Пару фрагментов прошивки.

#include "define.h" #include "init_mcu.h" #include "lcd.h" #include "text.h" #include "bits_macros.h" #include "fun.h" #include "encoder.h" #include "servise.h" #include "main.h" #include #include #include #include #include #include #include #define RELAY PB0 uint8_t lcd_time,lcd_track,lcd_count,enc_interval,enc_speed,off_charge; uint8_t U_bat_tim,I_bat_tim=255,stok_reg,energy_flag,count; uint16_t I_reg,enc_block,bat_count,bat_save,bat_off; EEMEM uint8_t energy_off; struct flag { _Bool lcd_clr_txt0: 1; _Bool lcd_clr_txt1: 1; _Bool count_timer0: 1;//для обработчика прерывания _Bool start_charging: 1;//отключение реле если при заряде бат откл. электричество _Bool ocr1a_block: 1; }flags; ISR(TIMER0_OVF_vect)//прерывание по переполнению Timer 0 раз в 1мсек. { TCNT0=0x6; flags.count_timer0=1; } void reg_I(uint16_t reg_val)//уменьшение тока заряда при достижении 14.4вольта { if (I_reg>reg_val) { I_reg=0; off_charge=1; if (OCR2!=0) { OCR2--; enc_data=OCR2; } } } void charg_off(void) { if (BitIsSet(PORTB,RELAY)) { eeprom_update_byte(&energy_off,0); } ClearBit(PORTB,RELAY); ClearBit(TCCR2,COM21);//отключили аппаратный вывод шим на пине PB3 OCR1A=0;//опустили питание импульсника до 12.5 вольт. off_charge=0; flags.start_charging=0; flags.ocr1a_block=0; enc_data=0; I_bat_tim=255; count=0; OCR2=0; } int main(void) { #if 1//инициализация MCU_init_ports(); MCU_init_adc(); MCU_init_an_comp(); MCU_init_timer0(); MCU_init_timer1(); MCU_init_timer2(); LCD_init(); LCD_string_of_flashXY(text_1,4,0); LCD_string_of_flashXY(text_2,3,1); _delay_ms(1500); LCD_string_of_flashXY(text_3,3,0); LCD_string_of_flashXY(text_4,2,1); _delay_ms(1500); LCD_clear(); if (BitIsClear(PIND,PUSH)){servise();}//вход в сервисное меню if (eeprom_read_byte(&energy_off) && u_batt()>20) { enc_data=eeprom_read_byte(&i_pusk); } else { eeprom_update_byte(&energy_off,0); } MCU_init_wdt(); sei(); #endif while(1) { wdt_reset(); uint8_t u_bat=u_batt(); uint8_t i_bat=i_batt(); #if 1/*определяем подключена ли батарея*/ if (u_bat>30)//30*0.0585=1.7 вольта на батарее, подключена { if (flags.lcd_clr_txt0==0) { flags.lcd_clr_txt0=1; LCD_clear(); } if (lcd_time>200) { lcd_time=0; LCD_string_of_flashXY(text_7,0,0); LCD_string_of_flashXY(text_9,7,0); LCD_string_of_flashXY(text_11,13,0); char buffer; uint16_t U=(u_bat*59)/100; utoa((uint8_t)U, buffer, 10);//выводим напряжение на дисплей if ((uint8_t)U>=100) { LCD_dataXY(buffer,2,0); LCD_data(buffer); LCD_data("."); LCD_data(buffer); LCD_string_of_flashXY(text_10,6,0); } else if ((uint8_t)U>=10 && (uint8_t)U<=99) { LCD_dataXY(buffer,2,0); LCD_data("."); LCD_data(buffer); LCD_string_of_flashXY(text_10,5,0); } else { LCD_dataXY("0",2,0); LCD_data("."); LCD_data(buffer); LCD_string_of_flashXY(text_10,5,0); } uint16_t I=(i_bat*20)/100; utoa((uint8_t)I, buffer, 10);//выводим ток на дисплей c шунта if ((uint8_t)I>9) { LCD_dataXY(buffer,10,0); LCD_data("."); LCD_data(buffer); } else { LCD_dataXY("0",10,0); LCD_data("."); LCD_data(buffer); } } } else //неподключена { LCD_string_of_flashXY(text_5,0,0); LCD_string_of_flashXY(text_6,0,1); flags.lcd_clr_txt0=0; eeprom_update_byte(&energy_off,0); continue; } #endif #if 1/*обрабатываем флаг прерывания timer0*/ if (flags.count_timer0==1) { flags.count_timer0=0; lcd_time++; enc_interval++; I_reg++; lcd_track++; if (enc_speed!=100)//определяем скорость вращения энкодера. { enc_speed++; } if (enc_block>=1) { enc_block++; if (enc_block>=500) { enc_block=0; } } if (BitIsSet (PORTB,RELAY)) { bat_count++; } else { bat_count=0; bat_off=0; bat_save++; } stok_reg++; if (flags.start_charging && count!=255) { count++; } } #endif #if 1/*Получение данных от энкодера*/ if (enc_interval>=5) { enc_interval=0; OCR2=encoder();//считали значение энкодера. #if 0//временно для теста char buffer; utoa(OCR2, buffer, 10); if (OCR2>=100) { LCD_dataXY(buffer,0,1); LCD_data(buffer); LCD_data(buffer); } else if (OCR2>=10 && OCR2<=99) { LCD_dataXY("0",0,1); LCD_data(buffer); LCD_data(buffer); } else { LCD_dataXY("0",0,1); LCD_data("0"); LCD_data(buffer); } #endif if (OCR2==0)//отключаем все. { charg_off(); } else//начали заряд { if (flags.ocr1a_block==0) { flags.ocr1a_block=1; OCR1A=255;//подняли питание импульсника до 17 вольт. } SetBit(TCCR2,COM21); SetBit(PORTB,RELAY); } } #endif #if 1 /*уменьшение тока заряда при достижении 14.4вольта*/ if (u_bat==246 && OCR2>0) { reg_I(3000);//раз в 3 сек } else if (u_bat==255 && OCR2>0) { reg_I(100);//раз в 100 мсек } else if (u_bat>246 && OCR2>0) { reg_I(500);//раз в 500 мсек } #endif #if 1 /*Отключаем заряд при достижении тока заряда 0.1А*/ if (off_charge==1 && enc_block==0) { if (i_bat<=5)//5*0.02=0.1 А ток в батарее. { charg_off(); flags.lcd_clr_txt1=1; LCD_string_of_flashXY(text_13,0,1);//"БАТАРЕЯ ЗАРЯЖЕНА" } } //отключение реле если при заряде бат откл. электричество. if (OCR2>0 && i_bat>4)//4*0.02=0.08A { flags.start_charging=1; } if (flags.start_charging==1 && i_bat<2 && count==255)//2*0.02=0.04 А ток в батарее. { ClearBit(PORTB,RELAY); } #endif #if 1 /*Бегущий индикатор на дисплее*/ if (OCR2>0) { if (flags.lcd_clr_txt1==1) { flags.lcd_clr_txt1=0; LCD_string_of_flashXY(text_8,0,1); } if (lcd_track>=200) { lcd_track=0; lcd_count++; switch (lcd_count) { case 0: LCD_data_of_flashXY(text_15,8,1); break; case 1: LCD_data_of_flashXY(text_16,8,1); break; case 2: LCD_data_of_flashXY(text_17,8,1); break; case 3: LCD_data_of_flashXY(text_18,8,1); break; case 4: LCD_data_of_flashXY(text_19,8,1); break; case 5: LCD_data_of_flashXY(text_20,8,1); break; case 6: LCD_data_of_flashXY(text_21,8,1); break; case 7: LCD_data_of_flashXY(text_22,8,1); break; case 8: #if 1 if (off_charge==1) { lcd_count=5; break; } if (u_bat<232)// 13.57V/0.0585=230 на АЦП. { lcd_count=255; LCD_string_of_flashXY(text_12,8,1); } else if (u_bat<=234) { lcd_count=0; } else if (u_bat<=236) { lcd_count=1; } else if (u_bat<=238) { lcd_count=2; } else if (u_bat<=240) { lcd_count=3; } else if (u_bat<=242) { lcd_count=4; } else if (u_bat<=244) { lcd_count=5; } else { lcd_count=5; } break; #endif default:lcd_count=5; break; } } } else { lcd_count=255; if (flags.lcd_clr_txt1==0) { flags.lcd_clr_txt1=1; LCD_string_of_flashXY(text_8,0,1); } } #endif #if 1 /*Аварийный таймер отключения*/ if (bat_count>=60000 && eeprom_read_byte(&timer_time))//мсек 60000 { bat_count=0; bat_off++; #if 1//для отладки LCD_string_of_flashXY(text_37,0,1); char buffer; utoa(bat_off, buffer, 10); if(bat_off>=100) { LCD_dataXY(buffer,2,1); LCD_data(buffer); LCD_data(buffer); LCD_string_of_flashXY(text_38,5,1); } else if (bat_off>=10 && bat_off<=99) { LCD_dataXY(buffer,2,1); LCD_data(buffer); LCD_string_of_flashXY(text_38,4,1); } else { LCD_dataXY(buffer,2,1); LCD_data(" "); LCD_string_of_flashXY(text_38,4,1); LCD_dataXY(" ",7,1); } #endif } if (u_bat>U_bat_tim && off_charge==0)//сброс аварийного таймера по напряжению { bat_off=0; U_bat_tim=u_bat; } if (i_bat= eeprom_read_word(&tim_dlitl))//180 минут по умолчанию { charg_off(); LCD_string_of_flashXY(text_14,0,1); bat_off=0; flags.lcd_clr_txt1=1; } #endif #if 1/*Регулировка напряжения на выходе блока питания*/ if (stok_reg>=100) { stok_reg=0; uint8_t u_stok=u_stokk(); if (u_stok>62)//0,0195*51*2=2 вольта на стоке. { if (OCR1A!=0) { OCR1A--; } } else if (u_stok<60) { if (OCR1A!=255) { OCR1A++; } } #if 0//временно для теста char buff; utoa(u_stok, buff, 10); if (u_stok>=100) { LCD_dataXY(buff,3,1); LCD_data(buff); LCD_data(buff); } else if (u_stok>=10 && u_stok<=99) { LCD_dataXY("0",3,1); LCD_data(buff); LCD_data(buff); } else { LCD_dataXY("0",3,1); LCD_data("0"); LCD_data(buff); } #endif } #endif #if 1 /*Режим хранения батареи*/ if (bat_save>=60000 && eeprom_read_byte(&save_on)!=0) { bat_save=0; if (u_bat<=eeprom_read_byte(&u_start))//12.5V / 0.0585=213,6 на АЦП { enc_data=eeprom_read_byte(&i_pusk); } } #endif #if 1 /*Режим отключения питания*/ if (enc_data && eeprom_read_byte(&power_off) && energy_flag==0) { energy_flag=1; eeprom_update_byte(&energy_off,1); } #endif } } #if 1 //тексты на дисплей const uint8_t PROGMEM text_1="Зарядное"; const uint8_t PROGMEM text_2="устройcтво"; const uint8_t PROGMEM text_3="SIRIUS 5А "; const uint8_t PROGMEM text_4="Для АКБ 12В"; const uint8_t PROGMEM text_5="Подключи батарею"; const uint8_t PROGMEM text_6="УЧТИ полярность."; const uint8_t PROGMEM text_7="U="; const uint8_t PROGMEM text_8=" "; const uint8_t PROGMEM text_9=" I="; const uint8_t PROGMEM text_10="В "; const uint8_t PROGMEM text_11="А "; const uint8_t PROGMEM text_12=" "; const uint8_t PROGMEM text_13="БАТАРЕЯ ЗАРЯЖЕНА"; const uint8_t PROGMEM text_14="ЗАРЯД ОТКЛЮЧЕН! "; // const uint8_t PROGMEM text_15={0xFF,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0}; // 1 const uint8_t PROGMEM text_16={0xFF,0xFF,0x20,0x20,0x20,0x20,0x20,0x20,0}; // 12 const uint8_t PROGMEM text_17={0xFF,0xFF,0xFF,0x20,0x20,0x20,0x20,0x20,0}; // 123 const uint8_t PROGMEM text_18={0xFF,0xFF,0xFF,0xFF,0x20,0x20,0x20,0x20,0}; // 1234 const uint8_t PROGMEM text_19={0xFF,0xFF,0xFF,0xFF,0xFF,0x20,0x20,0x20,0}; // 12345 const uint8_t PROGMEM text_20={0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x20,0x20,0}; // 123456 const uint8_t PROGMEM text_21={0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x20,0}; // 1234567 const uint8_t PROGMEM text_22={0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0}; // 12345678 const uint8_t PROGMEM text_23 ="Режим сохр. "; const uint8_t PROGMEM text_24 ="ВКЛ "; const uint8_t PROGMEM text_25 ="ВЫКЛ"; const uint8_t PROGMEM text_26 ="U запуска <"; const uint8_t PROGMEM text_27 =" СЕРВИСНОЕ МЕНЮ "; const uint8_t PROGMEM text_28 =" ВЫХОД ИЗ МЕНЮ "; const uint8_t PROGMEM text_29 ="I запуска "; const uint8_t PROGMEM text_30 ="Режим отключения"; const uint8_t PROGMEM text_31 ="питания "; const uint8_t PROGMEM text_32 ="Аварийный Таймер"; const uint8_t PROGMEM text_33 =" ВКЛ "; const uint8_t PROGMEM text_34 =" ВЫКЛ "; const uint8_t PROGMEM text_35 ="задержка "; const uint8_t PROGMEM text_36 =" мин"; const uint8_t PROGMEM text_37 ="T="; const uint8_t PROGMEM text_38 ="min"; #endif

Вопросы задаем сюда dmalash@gmail com
Если кому то нужен прошитый микроконтроллер, то его можно заказать отсюда . Все остальное естественно собираем и делаем сами.

Сейчас немного видео и фотографий. Вот так выглядел самый первый прототип.

Вот так выглядела первая плата.

В последствии была сделана более цивильная плата.

Потом был придуман корпус.

Потом все это было собрано.

В итоге получилось вот что.

Скачать схему зарядного устройства можно .
Заказать прошитый микроконтроллер можно .
Дополнительная информация., печатная плата .
Вопросы и пожелания [email protected]

С недавних пор скопилось много аккумуляторов - как кадмиевых, так и никель марганцевых. Для этого купил себе устройство посерьезнее, так как заряжать надо часто, да и аккумуляторы изнашивать трансформаторным ЗУ не очень хочется. Это для пальчиковых аккумуляторов содержит микросхему – микропроцессор F9444, который контролирует заряд аккумуляторов по парам, не допуская их перезарядки и поддерживает заряд только до нужного уровня. Можно собрать и самому подобное устройство, если спаять F9444 согласно . Правда цена микросхемы немалая – 130 руб.

Данные 8-разрядные Flash микроконтроллеры S3F9444 производит фирма Samsung. Контроллеры S3F9444 ориентированы на использование в тех случаях, для которых требуются ADC, о чем говорит следующая за цифрой 9 (8 разрядов) цифра 4 (ADC), несложные таймеры/счетчики и PWM. Особенностью микроконтроллеров S3F9444 является использование ядра CPU SAM88RCRI, младшей версии типового ядра SAM8 c архитектурой, характерной для 8-разрядных CPU фирмы Zilog.

Отличительными особенности архитектуры:

Регистровая архитектура, позволяющая использовать в качестве аккумулятора любой регистр и сокращающая время выполнения команд и необходимый объем памяти программ

Программный стек обеспечивает существенно большую глубину при вызовах подпрограмм и прерываниях, чем аппаратный стек

Конвейерная выборка и выполнение команд


Сокращение функциональных возможностей ядра SAM88RCRI, по сравнению с типовым ядром, привело к сокращению размеров кристалла, снижению потребления, снижению стоимости микроконтроллера в целом. Другим следствием сокращения функциональных возможностей стало уменьшение количества команд до 41 команды. Микроконтроллеры F9444 и оснащены Flash памятью емкостью 4 Кбайта и регистровым файлом, в котором 208 байтов могут быть использованы в качестве регистров общего назначения. Длительность командного цикла составляет 400 нс при fOSC = 10 МГц. Диапазон рабочих напряжений простирается от 2,0 (задаваемый уровень срабатывания схемы LVR) до 5,5 В. Предусмотрены режимы энергосбережения Power-Down и Idle. Типовое потребление при частоте тактирования CPU 10 МГц составляет 5 мА и в режиме Stop всего 0,1 мкА.

В состав встроенной периферии входят:

9-канальный 10-разрядный аналого-цифровой преобразователь (ADC)

8-разрядный широтно-импульсный модулятор (PWM) с максимальной частотой 156 кГц (6-разрядная база + два разряда расширения)

8-разрядный базовый таймер (для функций сторожевого таймера) и 8-разрядный таймер/счетчик с режимом измерения интервалов времени

Три порта I/O (всего до 18 выводов) с конфигурированием каждого вывода. Каждый вывод может управлять LED (типовой ток 10 мА)

Встроенная Smart функция, определяющая стартовые условия работы прибора (разрешение/запрет схемы LVR, используемы источники сигнала тактирования)


Как только будет закончена, аккумуляторы начнут заряжаться током меньше в несколько раз от зарядного, при этом можно не беспокоится что батареи перезарядятся перегреются взорвуться или загорятся, устройство само подбирает нужный ток в зависимости от батарей и их типа.

Так же в устройстве есть функция разряда батарей, что позволяет разряжать их при необходимости, а так же все это еще и отображают индикаторы светодиоды. Устройство поставляется в коробке, с блоком питания (который можно использовать и для других устройств когда не используется зарядка).


Без проблем заряжает даже аккумуляторы с большой ёмкостью 2500-2700 мА, и не за сутки, как в моем старом заряднике, а часа за 4, точно не засекал. При этом батареи сильно даже и не греются.

К статье прилагается фото зарядного устройства и его внутренностей, а так же по эксплуатации с таблицей емкостей и режимами индикации. С Вами был тов. Vanesex.

Это устройство предназначено для измерения ёмкости аккумуляторов Li-ion и Ni-Mh , а также для заряда Li-ion аккумуляторов с выбором начального тока заряда.

Управление

Подключаем устройство к стабилизированному блоку питания 5в и током 1А (например от сотового телефона). На индикаторе в течении 2 сек отображается результат предыдущего измерения емкости "ххххmA/c" а на второй строке значение регистра OCR1A "S.xxx". Вставляем аккумулятор. Если нужно зарядить аккумулятор то кратко жмём кнопку ЗАРЯД, если нужно измерить ёмкость то кратко жмём кнопку ТЕСТ. Если нужно изменить ток заряда (значение регистра OCR1A) то долго(2 сек) жмем кнопку ЗАРЯД. Заходим в окно регулировки регистра. Отпускаем кнопку. Кратко нажимая на кнопку ЗАРЯД меняем по кругу значения (50-75-100-125-150-175-200-225) регистра, в первой строке показывается ток заряда пустого аккумулятора при выбранном значении (при условии что у вас в схеме стоит резистор 0,22 Ом). Кратко жмём кнопку ТЕСТ значение регистра OCR1A запоминаются в энергонезависимой памяти.
Если вы проделывали разные манипуляции с устройством и вам надо сбросить показания часов, измеренной ёмкости то долго жмём кнопку ТЕСТ (значение регистра OCR1A не сбрасываются). Как только заряд окончен подсветка дисплея отключается, для включения подсветки кратко нажмите кнопку ТЕСТ или ЗАРЯД.

Логика работы устройства следующая:

При подаче питания, на индикаторе отображается результат предыдущего измерения ёмкости аккумулятора и значение регистра OCR1A, хранящееся в энергонезависимой памяти. Через 2 секунды устройство переходит в режим определения типа аккумулятора по величине напряжения на клемах.

Если напряжение более 2В то это Li-ion аккумулятор и напряжение полного разряда составит 2,9В, иначе это Ni-MH аккумулятор и напряжение полного разряда составит 1В. Только после подключения аккумулятора доступны кнопки управления. Далее устройство ожидает нажатия кнопок Тест или Заряд. На дисплее отображается "_STOP". При нажатии кратко кнопки Тест подключается нагрузка через MOSFET.

Величина тока разряда определяется по напряжению на резисторе 5,1Ом и, каждую минуту суммируется с предыдущим значением. В устройстве используется кварц 32768Гц для работы часов.

На дисплее отображается текущая величина емкости аккумулятора "ххххmA/c" и тора разряда "А.ххх", а также время "хх:хх:хх"с момента нажатия кнопки. Показывается также анимированный значок разряда аккумулятора. По окончании теста для Ni-MH аккумулятора появляется надпись "_STOP", результат измерения отображается на дисплее "ххххmA/c" и запоминается.

Если аккумулятор Li-ion, то также результат измерения отображается на дисплее "ххххmA/c" и запоминается, но сразу включается режим заряда. На дисплее отображается содержимое регистра OCR1A "S.xxx". Показывается также анимированный значок заряда аккумулятора.

Регулировка тока заряда осуществляется с помощью ШИМ и ограничивается резистором 0,22Ом. Апаратно ток заряда можно уменьшить увеличив сопротивление 0,22Ом до 0,5-1Ом. В начале заряда ток плавно нарастает до значения регистра OCR1A или до достижения напряжения на клемах аккумулятора 4,22В (если аккумулятор был заряжен).

Величина тока заряда зависит от значения регистра OCR1A - больше значение - больше ток заряда. При превышении напряжения на клемах аккумулятора 4,22В значение регистра OCR1A уменьшается. Процесс дозаряда продолжается до величины регистра OCR1A равного 33, что соответствует току около 40 mA. На этом заряд заканчивается. Подсветка дисплея отключается.

Настройка

1. Подключаем питание.
2. Подключаем аккумулятор.
3. Подключаем вольтметр к аккумулятору.
4. Временными кнопками + и - (PB4 и PB5)добиваемся совпадения показания вольтметра на дисплее и на эталонном вольтметре.
5. Длительно нажимаем на кнопку ТЕСТ (2 сек), происходит запоминание.
6. Извлекаем аккумулятор.
7. Подключаем вольтметр к резистору 5,1Ом (по схеме около транзистора 09N03LA).
8. Подключаем регулируемый БП к клемам аккумулятора, выставляем на БП 4В.
9. Нажимаем кратко кнопку ТЕСТ.
10. Измеряем напряжение на резисторе 5,1Ом - U.
11. Высчитываем ток разряда I=U/5,1
12. Временными кнопками + и - (PB4 и PB5) устанавливаем на индикаторе"А.ххх" рассчитанный ток разряда I.
13. Длительно нажимаем на кнопку ТЕСТ (2 сек), происходит запоминание.

Устройство питается от стабилизированного источника напряжением 5 Вольт и током 1А. Кварц на 32768Гц предназначен для точного отсчета времени. Контроллер ATmega8 тактируется от внутреннего генератора частотой 8 МГц, также необходимо установить защиту от стирания EEPROM соответствующими битами конфигурации. При написании управляющей программы были использованы обучающие статьи с данного сайта.

Текущие значения коэффициентов напряжения и тока (Ukof . Ikof) можно увидеть если подключить дисплей 16х4 (16х4 предпочтительно для отладки) на третьей строке. Или в Ponyprog если открыть файл прошивки EEPROM (считать с контроллера EEPROM).
1 байт - OCR1A , 2 байт - I_kof, 3 байт - U_kof, 4 и 5 байт результат предыдущего измерения емкости.

Видео работы прибора: