Высоковольтный генератор тока. Генератор высокого напряжения на транзисторе

Мощный генератор высокого напряжениям (аппарат Кирлиана), 220/40000 вольт

Генератор вырабатывает напряжение до 40000 В и даже выше, которое можно прилагать к электродам, описанным в предыдущих проектах.

Может потребоваться использование в электроде более толстой стеклянной или пластмассовой пластины во избежание серьезного электрического удара. Хотя схема достаточно мощная, ее выходной ток невелик, что снижает опасность смертельного удара при соприкосновении с какими-либо частями устройства.

Тем не менее следует быть крайне осторожным при обращении с ней, так как возможность электрошока все равно не исключена.

Внимание! Высокие напряжения опасны. Будьте предельно осторожны при работе с данной схемой. Желательно иметь опыт обращения с подобными устройствами.

Вы можете использовать генератор в экспериментах с фотографией Кирлиана (электрофотографией) и других паранормальных экспериментах, например связанных с плазмой или ионизацией.

В схеме используются обычные компоненты, ее выходная мощность составляет около 20 Вт.

Ниже приведены некоторые характеристики устройства:

  • напряжение источника питания - 117 В или 220/240 В (сеть переменного тока);
  • выходное напряжение - до 40 кВ (в зависимости от высоковольтного трансформатора);
  • выходная.мощность - от 5 до 25 Вт (в зависимости от используемых компонентов);
  • число транзисторов - 1;
  • рабочая частота - от 2 до 15 кГц.

Принцип работы

Схема, показанная на рис. 2.63, состоит из однотранзисторного генератора, рабочая частота которого определяется конденсаторами С3 и С4 и индуктивностью первичной обмотки высоковольтного трансформатора.

Рис. 2.63 Аппарат Кирлиана

В проекте используется мощный кремниевый n-p-n транзистор. Для отвода тепла его следует укрепить на достаточно большом радиаторе.

Резисторы R1 и R2 определяют выходную мощность, задавая ток транзистора. Его рабочую точку задает резистор R3. В зависимости от характеристик транзистора необходимо опытным путем подобрать значение резистора R3 (оно должно находиться в пределах 270...470 Ом).

В качестве высоковольтного трансформатора, который также определяет рабочую частоту, используется выходной трансформатор горизонтальной развертки телевизора (строчный трансформатор) с ферритовым сердечником. Первичная обмотка состоит из 20...40 витков обычного изолированного провода. На вторичной обмотке образуется очень высокое напряжение, которое вы и будете использовать в экспериментах.

Источник питания очень простой он представляет собой двухполупериодный выпрямитель с понижающим трансформатором. Рекомендуется использовать трансформатор со вторичными обмотками, обеспечивающими напряжение 20...25 В и токи 3...5 А.

Сборка

Перечень элементов приведен в табл. 2.13. Так как требования к сборке не очень строгие, на рис. 2.64 представлен способ монтажа с использованием монтажной колодки. На ней размещаются небольшие детали, такие как резисторы и конденсаторы, соединенные между собой навесным монтажом.

Таблица 2.13. Перечень элементов

Крупные детали, например трансформатор, прикрепляются винтами прямо к корпусу.

Корпус лучше делать пластмассовый или деревянный.

Рис. 2.64. Монтаж устройства

Высоковольтный трансформатор можно изъять из неработающего черно-белого или цветного телевизора. Если получится, воспользуйтесь телевизором с диагональю 21 дюйм или больше: чем крупнее кинескоп, тем большее напряжение должен формировать строчный трансформатор телевизора.

Резисторы R1 и R2 - проволочные С1 - любой конденсатор номиналом 1500...4700 мкФ.

  • Tutorial

Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса . Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.

Принцип работы

Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт - это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.

О деталях:

Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:
1 - резисторы
Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения - дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.

Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)

2 - конденсаторы
Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке - К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.
3 - источник питания
Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.

Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.

Процесс сборки

С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм - это будут разрядники.

Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:

Техника безопасности

Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.

Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.

Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.

Первое, что ощущаешь при включении - то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.

Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери - проскочила искра, захотел взять ножницы - стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.

Лампочки загораются сами по себе, без проводов.

Озоном пахнет по всему дому, как после грозы.

Заключение

Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.

В интернете есть немало схем для получения высокого напряжения в домашних условиях — на строчниках, на MOTах с микроволновки, катушки Тесла и прочее. Однако самым простейший способ - на основе трансформатора строчной развертки телевизора и транзистора. Трансформатор можно выдрать со старого лампового ч/б телевизора.

Была найдена простейшая схема — строчник, мощный биполярный транзистор, 2 резистора. Это блокинг-генератор собранный на транзисторе. Он практически не нуждается в наладке — должно все сразу заработать.

Приступаем к созданию самодельного генератора высокого напряжения. Аккуратно разобрав строчник — удаляю панель кенотрона, первичные обмотки, откусив кусачками от контактной группы:

Оставляю вторичную высоковольтную обмотку, состоящую из множества витков тонкой проволоки, ферритовый сердечник, корпус, контактную группу. Наматываю свои обмотки эмалированной медной проволокой на корпус контактной группы: Первая: 7 витков примерно 1 мм диаметром. Вторая: 3 витка примерно 1.5 мм.

Обмотки мотал в одну сторону — концы припаял к контактной группе. Сверху зафиксировал и заизолировал изолентой. Собираю строчник в обратном порядке. Вообще, толщина и количество витков можно варьироваться. Что было под рукой — то и сделал. Длина разряда, в общей сложности, около 3 сантиметров.

Провел множество экспериментов и обнаружил много интересных вещей: Один провод заземлен на батарею, второй подключен к обычной лампочке. Внутри ионизируется аргон, которым она заполнена, создавая красивые эффекты. Также ее можно брать руками — ионизация еще сильнее.

Разряд можно поймать на металлический предмет, держа его в руке. Т.к. частота генератора высокая — возникает скин-эффект, т.е. ток проходит по поверхности кожи, не задевая нервных окончаний, соответственно не должно возникать болевых ощущений. Напрямую ловить разряд на кожу нельзя — можно получить ожог. Недолго думая, взял пинцет в руку и сунул его к свободному электроду генератора. Второй заземлен на батарею. Появился разряд и сильная боль в руке: получил довольно мощный удар током. Эксперимент повторять не стал — очень неприятно. Замерил потребляемый «ток холостого хода» — без разряда, около 2 А при напряжении 12 В. Это около 25 Ватт потребляемой мощности. При наличии разряда — потребление изменяется незначительно.


Схема простой переделки блока питания ATX, для возможности использовать его как зарядное устройство автоаккумулятора.

Многие из нас хоть раз в жизни видели в интернете или в реальной жизни фотографии Высоковольтных генераторов, или сами их делали. Многие представленные в интернете схемы довольно мощные, их выходное напряжение составляет от 50 до 100 Киловольт. Мощность, как и напряжение тоже довольно высокая. Но их питание – главная проблема. Источник напряжения должен быть подобающей генератору мощности, должен уметь отдавать долговременно большой ток.

Есть 2 варианта питания ВВ генераторов:

1)аккумулятор,

2)сетевой источник питания.

Первый вариант позволяет запустить устройство далеко «от розетки». Однако, как раннее было замечено, устройство будет потреблять большую мощность и, следовательно, аккумулятор должен обеспечивать эту мощность (если вы хотите, чтобы генератор работал «на все 100»). Аккумуляторы такой мощности довольно большие и автономным устройство с таким аккумулятором не назовёшь. Если осуществлять питание от сетевого источника, то об автономности тоже говорить не придётся, так как генератор буквально «не оторвёшь от розетки».

Моё же устройство вполне автономно, так как потребляет от встроенного аккумулятора не так уж и много, однако вследствие низкого потребления мощность тоже не велика – около 10-15W. Но дугу с трансформатора получить можно, напряжение около 1 Киловольта. С умножителя напряжения по выше – 10-15 Кв.

Ближе к конструкции…

Так как этот генератор для серьёзных целей не планировал, я поместил все его «внутренности» в картонную коробку (как бы смешно это не звучало, но это так. Я прошу не судить строго мою конструкцию, так как высоковольтной технике я не специалистL). У моего устройства присутствуют 2 Li-ionаккумулятора, ёмкостью 2200 мА/ч. Их зарядка осуществляется с помощью линейного стабилизатора на 8 вольт: L7808. Он также находится в корпусе. Также имеется два зарядных устройства: от сети (12 в., 1250 мА/ч.) и от прикуривателя автомобиля.

Сама схема генерации высокого напряжения состоит из нескольких частей:

1)фильтр входного напряжения,

2)задающий генератор, построенный на мультивибраторе,

3)силовые транзисторы,

4)высоковольтный повышающий трансформатор (хочу отметить, что сердечник не должен иметь зазор, наличие зазора приводить к увеличению тока потребления и вследствие выход из строя силовых транзисторов).

Также к высоковольтному выходу можно подключить «симметричный» умножитель напряжения или… люминесцентную лампу, тогда ВВ генератор превращается в фонарь. Хотя на самом деле изначально это устройство планировалось сделать как фонарь. Схема преобразователя выполнена на макетной плате, при желании можете создать печатную плату. Максимальное потребление схемы – до 2-3 Ампера, это стоит учитывать при выборе выключателей. Стоимость устройства зависит от того, где вы брали компоненты. Я большую половину комплектации нашёл у себя в ящике или в коробке для хранения радиодеталей. Купить мне пришлось всего лишь линейный стабилизатор L7808, ИВЛМ1-1/7 (на самом деле сюда вставил ради интереса, а купил из любопытства J), также мне пришлось купить электронный трансформатор для галогенных ламп (из него я взял всего лишь трансформатор). Провод для намотки вторичной (повышающей, высоковольтной) обмотки взял из давно сгоревшего строчного трансформатора (ТВС110ПЦ), и Вам советую делать тоже самое. Так провод в строчных трансформаторах высоковольтный и с пробоем изоляции проблем быть не должно. С теорией вроде бы разобрались – теперь перейдём к практике…

Внешний вид…

Рис.1 – вид на управляющую панель:

1)индикаторы работоспособности

2)индикатор присутствия зарядного напряжения

3)вход от 8 до 25 вольт (для зарядки)

4)кнопка включения заряда аккумулятора (включать только при подключённом зарядном устройстве)

5)переключатель аккумуляторов (верхнее положение – основной, нижнее - запасной)

6)выключатель ВВ генератора

7)высоковольтный выход

На лицевой панели присутствуют 3 индикатора работоспособности. Их здесь такое количество, потому что семисегментный индикатор является моим инициалом (на нём светиться первая буква моего имени: «А»J), светодиоды над выключателем и переключателем изначально планировались быть дополнительными индикаторами заряда батареи, но со схемой индикации возникла проблема, а отверстия в корпусе уже были сделаны. Пришлось поставить светодиоды, но уже в качестве просто индикаторов, дабы не портить внешний вид.

Рис.2 – вид на вольтметр и индикатор:

8)вольтметр – показывает напряжение на аккумуляторе

9)индикатор – ИВЛМ1-1/7

10)предохранитель (от случайного включения)

Вакуумно-люминесцентный индикатор установил ради интереса, так как это мой первый индикатор такого типа.

Рис.3 – внутренний вид:

11)корпус

12)аккумуляторы (12,1-основной, 12,2-запасной)

13)линейный стабилизатор 7808 (для зарядки аккумуляторов)

14)плата преобразователя

15)теплоотвод с полевым транзистором КП813А2

Тут, думаю нечего пояснять.

Рис.4 – зарядные устройства:

16)от сети 220 в. (12 в., 1250 мА.)

17)от прикуривателя автомобиля

Рис.5 – нагрузки для АВВГ:

18)9 W люминесцентная лампа

19)«симметричный» умножитель напряжения

Рис.6 – принципиальная схема:

USB 1 – стандартный выход USB

BAT 1, 2 – Li - ion 7,4 в. 2200 мА/ч (18650 Х 2)

R 1, 2, 3, 4 – 820 Ом

R 5 – 100 КОм

R 6, 7 – 8,2 Ом

R 8 – 150 Ом

R 9, 12 – 510 Ом

R 10, 11 – 1 КОм

L 1 – сердечник от дросселя из энергосберегающей лампы, 10 витков по 1,5 мм.

C 1 – 470 мкФ 16 в.

C 2, 3 – 1000 мкФ 16 в.

C 4, 5 – 47 нФ 250 в.

C 6 – 3,2 нФ 1,25 Кв.

C 7 – 300 пФ 1,6 Кв.

С8 – 470 пФ 3 Кв.

С9, 10 – 6,3 нФ

C 11, 12, 13, 14 – 2200 пФ 5 Кв.

D 1 – красный светодиод

D 2 – АЛ307ЕМ

D 3 – АЛС307ВМ

VD 1, 2, 3, 4 – КЦ106Г

HL 1 – ЗЛС338Б1

HL 2 – NE 2

HL 3 – ИВЛМ1-1/7

HL 4 – ЛДС 9 W

IC 1 – L 7808

SB 1 – кнопка 1А

SA 1 – выключатель 3А (ON - OFF с неоновой лампой)

SA 2 – переключатель 6А (ON - ON )

SA 3 – выключатель 1А (ON - OFF )

PV 1 –М2003-1

T 1 – повышающий трансформатор:

ВВ обмотка: 372 витков ПЭВ-2 0.14мм. R=38.6ом

Первичная обмотка: 2 по 7 витков ПЭВ-… 1мм. R=0.4ом

VT 1 – КТ819ВМ

VT 2 – КП813А2

VT 3, 4 – КТ817Б

Общее количество компонентов: 53.

Без чего МОЖЕТ работать эта схема, на самом деле много без чего: IC1, R1, 2, 3, 4, 5, 8, C1, 2, 3, 4, 5, 7, 8,

Пояснения к схеме:

Минус общий, идёт от входа USB до платы преобразователя. Плюсы от аккумуляторов идут к переключателю, от него уже один вывод к выключателю (SA1), а от него к преобразователю. Также плюс идет к вольтметру (PV1), через резистор к катоду индикатора и к анодам светодиодов (для каждого светодиода отдельный резистор). Зарядка осуществляется после того как на вход USB подаётся напряжение от 8 до 25 вольт, а также после нажатия кнопки (SB1), светодиод (D1) загорается после того как подаётся напряжение для зарядки (контролировать процесс заряда можно с помощью вольтметра PV1).

Переключение между основным и запасным аккумуляторами осуществляется с помощью переключателя (SA1), дальше силовой плюс идёт к выключателю (SA2) (через выключатель SA3) ВВ генератора, неоновая лампа (HL2) находится внутри выключателя. Дальше силовые выводы поступают на блок конденсаторов и задающий генератор, построенный на мультивибраторе(VT3, 4. C9, 10. R9, 10, 11, 12), транзисторы КТ817Б можно заменить на любые другие аналоги, от него импульсы поступают на базу и затвор транзисторов(VT1, VT2), транзисторыможно использовать менее или более мощные аналоги. Здесь использованы полевой и биполярный транзисторы, сделано это для того, чтобы снизить потребление. После трансформатора высокое напряжение поступает на группы анодов-сегментов вакуумно-люминесцентного индикатора, а после на ВВ выход.

Потребление (как фонарь): за 1 минуту схема разряжает аккумулятор на 0,04 В. (40 милливольт.). Если генератор будет работать 25 минут, следовательно, разрядится на 1 вольт (25*0,04).

Генератор, в зависимости от напряжения источника питания, вырабатывает высоковольтные импульсы амплитудой до 25 кВ. Он может работать от гальванической батареи на 6В (четыре элемента типа "А"), аккумуляторной батареи на 6... 12В, бортовой сети автомобиля, лабораторного источника питания до 15В. Диапазон применения достаточно широк: электроизгороди на ферме для животных, зажигалка для газа, электрошоковое средство защиты, и др. При изготовлении подобных устройств наибольшие трудности вызывает высоковольтный трансформатор.

Даже при удачном изготовлении он не отличается надежностью и часто выходит из строя от сырости или из-за пробоя изоляции между катушками. Попытка сделать высоковольтный генератор на основе диодного умножителя напряжения тоже не всегда дает положительный результат.

Проще всего использовать готовый высоковольтный трансформатор - автомобильную катушку зажигания от автомобиля с классической системой зажигания. Этот трансформатор отличается высокой надежностью и может работать даже в самых не благоприятных полевых условиях. Конструкция катушки зажигания рассчитана на жесткую эксплуатацию в любых погодных условиях.

Принципиальная схема генератора показана на рисунке. На транзисторах VT1 и VT2 сделан несимметричный мультивибратор, он вырабатывает импульсы частотой около 500 Гц. Эти импульсы протекают через коллекторную нагрузку транзистора VT2 - первичную обмотку катушки зажигания. В результате в её вторичной обмотке, имеющей значительно большее число витков, наводится переменное импульсное высоковольтное напряжение.

Это напряжение поступает на разрядник, если это средство самозащиты или зажигалка для газа, или на электроизгородь. В этом случае на изгородь подается напряжение с центрального вывода катушки зажигания (с того вывода, с которого напряжение поступает на распределитель и свечи), а общий плюс схемы нужно заземлить.

Если генератор будет использоваться как средство самозащиты, его удобнее всего сделать в виде палки. Взять пластмассовую или металлическую трубку такого диаметра, чтобы в неё туго вставлялась катушка зажигания своим металлическим корпусом. В остальном пространстве трубы расположить батареи питания и транзисторы. S1 в этом случае - приборная кнопка. Верхнюю часть корпуса катушки придется переделать.

Удобнее всего взять штепсельную вилку старого образца для сети 220В, с вывинчивающимися контактами. Отверстие под провод в ней нужно рассверлить так, чтобы в него плотно входила часть катушки зажигания с высоковольтным контактом. Затем нужно вывести монтажные провода от этого контакта и от общего плюса схемы и по самым краям вилки их подвести к штыревым контактами вилки.

Затем эту вилку нужно промазать эпоксидным клеем в рассверленном отверстии под провод и туго насадить на пластмассовый корпус высоковольтного контакта катушки. Под штыревые контакты вилки нужно привинтить разрядные лепестки, расстояние между которыми должно быть около 15 мм.

Катушка зажигания может быть любая от контактной системы зажигания (от электронной не подходит), желательно импортная, - она меньше по размерам и лете.

Настройка заключается в подборе номинала R1 таким образом, чтобы между разрядными лепестками был надежный электрический разряд.