Типы свинцово-кислотных аккумуляторов. Особенности применения свинцово-кислотных аккумуляторов Типы свинцово-кислотных аккумуляторов

Новые разработки в области изготовления аккумуляторов, после проведения необходимых испытаний, сразу же внедряются в производство. Это связано с тем, что АКБ является расходной деталью автомобиля. Внутренние элементы батареи работают в условиях агрессивной среды, при этом, на тонкие пластины и сепараторы оказывают разрушительное воздействие вибрация и большой разброс рабочих температур.

Содрежание

Что такое VRLA аккумуляторы

В прошлом, постоянное испарение воды приводило к оголению металлических частей электродов и ещё более интенсивному разрушению свинцовых элементов. Чтобы уменьшить негативное влияние разрушительных факторов современные батареи делают , то есть открыть крышку и добавить дистиллированную воду в таких изделиях уже не получится. Наиболее передовой, в этом плане, является технология AGM VRLA.

Технология VRLA расшифровывается, как Valve Regulated Lead Acid, что в переводе означает кислотный аккумулятор со специальным регулировочным клапаном. Выпускаются такие батареи в полностью закрытом корпусе, но благодаря наличию предохранительной системе при возникновении большого внутреннего давления, разрушение аккумулятора не происходит.

Несмотря на наличие связи с атмосферой через клапанное отверстие, обслуживать такую батарею не требуется, ведь испарение жидкости происходит в исключительных случаях. Например, при ежедневной эксплуатации такой запорный механизм остаётся закрытым, но если забыть включённым зарядное устройство на длительный промежуток времени, то совсем незначительная часть воды из электролита может быть выйти через автоматически открывшееся отверстие.


AGM VRLA

Особенности технологии

Батареи с предохранительным клапаном могут быть изготовлены по различным технологиям.

AGM VRLA Battery

VRLA AGM представляют собой герметичные батареи с клапаном, пластины которых изготовлены по . Такие изделия обладают большим сроком годности благодаря абсорбирующему стекловолоконному слою, который впитывает в себя весь электролит и одновременно поддерживает свинцовые пластины, предохраняя их от осыпания.

VRLA GEL

Это , то есть внутри банки вместо жидкого раствора серной кислоты, находится желеобразное вещество, которое выполняет функцию электролита. VRLA Battery изготовленные по гелевой технологии также оснащаются клапаном.

Благодаря тому, что гель оказывает меньшее разрушительное воздействие на пластины, а при возникновении избыточного давления в таком аккумуляторе происходит открытие предохранительного устройства, срок эксплуатации изделия может достигать 10 лет.

Учитывая наличие таких важнейших качеств, как высокая надёжность, устойчивость к глубокому разряду и большой срок годности VRLA-аккумуляторы получили распространение во многих сферах хозяйственной деятельности, где требуется надёжный химический источник электроэнергии.

Где применяются VRLA АКБ

Самое широкое применение эта технология производства аккумуляторных батарей получила в машиностроении. Наличие клапана, который открывается только в момент возникновения избыточного давления, позволило отказаться от устаревшего типа корпуса, представляющий собой конструкцию, оснащённую ввинчиваемыми пробками. Отсутствие возможности со стороны водителя открыть доступ к банкам значительно повысило срок годности изделия.

VRLA-аккумуляторы устойчивы к глубоким разрядам, поэтому могут быть использованы не только в качестве стартерных батарей, но и для оснащения устройств бесперебойного питания. По этой же причине такие модели батарей применяются в качестве основного энергоаккумулятора для лодок, оснащённых электродвигателем, машин для гольфа и инвалидных колясок.


VRLA GEL

Как заряжать VRLA батареи

Зарядка VRLA-аккумулятора зависит от того, по какой технологии была изготовлена батарея. Если изделие этого типа имеет электролит в виде геля, то, несмотря на наличие предохранительного клапана, необходимо следить за тем, чтобы газообразование внутри изделия не стало образовываться слишком активно.

В случае, когда восстановление ёмкости такого аккумулятора осуществляется с подачей напряжения более 15 Вольт, произойдёт не только уменьшение объёма электролита, но и отделение желеобразной массы от пластин, что приведёт к неминуемому уменьшению ёмкости батареи и ее смерти. Чтобы уменьшить вероятность выхода из строя этого типа аккумуляторов при зарядке, рекомендуется использовать специальные ЗУ, которые подают электрический ток на клеммы в автоматическом режиме, подстраивая величину силы тока и напряжения в зависимости от заряженности АКБ и её температуры.

VRLA-аккумуляторы, сделанные по технологии AGM более устойчивы к погрешностям при зарядке, но чтобы максимально продлить срок службы такой батареи не рекомендуется превышать следующие показатели:

  • Напряжение заряда - 14,8 В.
  • Зарядный ток – 10% от ёмкости батареи.

При восстановлении работоспособности аккумуляторной батареи таким образом, продолжительность подключения к зарядному устройству должна составить около 10 часов.

Как и при зарядке гелевых изделий AGM-аккумуляторы, оснащённые предохранительным клапаном, можно восстанавливать с помощью автоматических ЗУ. Такие устройства потребуют минимального контроля со стороны человека.

У Вас был или есть Аккумулятор VRLA ? Тогда расскажите в комментариях о своих впечатлениях о нем, это очень поможет остальным автолюбителям и сделает материал более полным и точным.

Batteries caption=A valve regulated lead acid battery EtoW=30 40 Wh/kg EtoS=60 75 Wh/L PtoW=180 W/kg|CtoDE=70% 92% EtoCP=7(sld) 18(fld) Wh/US$ SDR=3% 20%/month… … Wikipedia

Battery (electricity) - For other uses, see Battery (disambiguation). Various cells and batteries (top left to bottom right): two AA, one D, one handheld ham radio battery, two 9 volt (PP3), two AAA, one C, one … Wikipedia

battery - /bat euh ree/, n., pl. batteries. 1. Elect. a. Also called galvanic battery, voltaic battery. a combination of two or more cells electrically connected to work together to produce electric energy. b. cell (def. 7a). 2. any large group or series… … Universalium

Battery - /bat euh ree/, n. The, a park at the S end of Manhattan, in New York City. Also called Battery Park. * * * Any of a class of devices, consisting of a group of electrochemical cells (see electrochemistry), that convert chemical energy into… … Universalium

Battery recycling - is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. It is widely promoted by environmentalists concerned about contamination, particularly of land and water, by the addition of heavy metals … Wikipedia

VRLA battery - A valve regulated (sealed) lead–acid battery A VRLA battery (valve regulated lead–acid battery) is a type of low maintenance lead–acid rechargeable battery. Because of their construction, VRLA batteries do not require regular addition of water to … Wikipedia

Nickel–cadmium battery - From top to bottom – Gumstick , AA, and AAA Ni–Cd batteries. specific energy 40–60 W·h/kg energy density 50–150 W·h/L specific power 150& … Wikipedia

Nickel-cadmium battery - Batteries caption=From top to bottom Gumstick , AA, and AAA NiCd batteries. EtoW = 40–60 Wh/kg EtoS = 50–150 Wh/L PtoW = 150W/kg CtoDE= 70%–90% [ ] EtoCP= ? US$… … Wikipedia

Automotive battery - 12 V, 40 Ah Lead acid car battery An automotive battery is a type of rechargeable battery that supplies electric energy to an automobile. Usually this refers to an SLI battery (starting, lighting, ignition) to power the starter motor … Wikipedia

Nickel–metal hydride battery - NiMH redirects here. For other uses, see NIMH (disambiguation). Nickel–metal hydride battery Modern, high capacity NiMH rechargeable cells specific energy 60–120 W·h/kg … Wikipedia

History of the battery - could only function in a certain orientation. Many used glass jars to hold their components, which made them fragile. These practical flaws made them unsuitable for portable appliances. Near the end of the 19th century, the invention of dry cell… … Wikipedia

Принцип работы

Принцип работы СКА основан на окислительных свойствах четырехвалентного свинца и его переходе в более устойчивое двухвалентное состояние. СКА в простейшем случае можно рассмотреть как две решетчатые свинцовые пластины, ячейки которых заполняются тестообразной смесью окиси свинца с водой. Пластины погружаются в разбавленную серную кислоту плотностью 1,15-1,20 г.см3(22-28% H2SO4). Вследствие реакции

PbO + H 2 SO 4 = PbSO 4 + H 2 O

Окись свинца превращается через некоторое время в сернокислый свинец. Если теперь попустить через эти пластины постоянный ток, то аккумулятор будет заряжаться, причем у электродов будут происходить следующие процессы:

ЗАРЯД

КАТОД PbSO 4 + 2е - = Pb + SO 4

АНОД PbSO 4 - 2 е - + H2O = PbO 2 + 4H + SO 4 -2

Таким образом, по мере пропускания тока на катоде образуется рыхлая масса металлического свинца, а на аноде - темно-бурая окись свинца. По окончанию зарядки аккумулятора начнется энергетичное разложение воды: у катода выделяется водород, у анода - кислород.

При соединении пластин проводником с платины покрытой свинцом, часть ионов двухвалентного свинца переходит в раствор, освобождающиеся при этом электроны по проводнику переходят к PbO 2 и восстанавливают четырехвалентный свинец в двухвалентный. В результате у той и другой пластины образуются ионы двухвалентного свинца, которые соединяются с находящимися в растворе ионами SO 4 в нерастворимый сернокислый свинец, и аккумулятор разряжается.

РАЗРЯД

ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРОДPb 0 - 2е - + SO 4 -2 = PbSO 4

ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРОД PbSO 4 + 2е - + 4 H + SO 4 -2 = PbSO 4 + 2H 2 O

При разрядке аккумулятора концентрация серной кислоты уменьшается, так как расходуются сульфат - ионы и ионы водорода и образуется вода. Поэтому о степени разряженности аккумулятора можно судить по плотности кислоты.

Особенности свинцово-кислотных аккумуляторов.

Экономичнее СКА до сих пор ничего не изобретено. Широкое распространение они получили благодаря высокой надежности и низкой цене.

Первый СКА был изобретен в 1859 г. французским ученым Гастоном Планте, его конструкция представляла электроды из листового свинца, разделенные сепараторами из полотна, которые были свернуты в спираль и помещены в сосуд с 10% раствором серной кислоты. Первоначально у них была низкая емкость, и требовалось достаточно большое количество циклов заряда-разряда, чтобы увеличить емкость, для получения существенного результата требовалось до двух лет.

В 1880г. К. Фор предложил предложил технологию изготовления намазных электродов, путем нанесения на пластины окислов свинца. А в 1881 г. Э. Фолькмар предложил использовать в качестве электродов намазную решетку. В том же году Седлону был выдан патент на технологию изготовления решеток из сплавов свинца и сурьмы. Однако существовала проблема заряда батарей (для заряда применялисьпервичные элементы конструкции Бунзена - один ХИТ заряжал другой). Ситуация кардинально изменилась с появлением генераторов постоянного тока.

К 1890 г был освоен серийный выпуск СКА, а в 1900г. Varta выпустила первый стартерный аккумулятор.

В настоящее время активно производятся и используются аккумуляторы трех поколений

Батареи первого поколения - батареи с жидким электролитом открытого или закрытого типа, имеющие емкость от 36 Ач до 5328 Ач и срок службы от 10 до 20 лет. Батареи открытого типа непосредственно соприкасается с открытым воздухом, и основные затраты связанны с обслуживанием (доливка дисцилиронанной воды) и расходы на содержание хорошо вентилируемых помещений. Батареи закрытого типа имеют специальные пробки, обеспечивающие задержку аэрозоли серной кислоты. Батареи закрытого типа могут быть необслуживаемые, т.е.они поставляются залитыми и заряженными, и в течение всего срока службы нет необходимости доливки воды (конструкция пробок обеспечивает удержание паров воды в виде конденсата).

Батареи второго поколения - герметизированные гелевые батареи (GEL). В них используется гелеобразный электролит, представляющий собой желе, полученное в результате смешивания раствора серной кислоты с загустителем (обычно двуокись кремния SiO 2 - селикагель). Благодаря своей вязкости он хорошо удерживается в порах и способствует эффективному использованию активных веществ электродов. Транспорт кислорода обеспечивается по трещинам, которые возникают при усадке твердеющего электролита. Гелевые батареи в течение всего срока эксплуатации не нуждаются в обслуживании, их нельзя вскрывать. Для их подзаряда необходимо использовать ЗУ, обеспечивающие стабильность напряжения заряда не хуже 1% для предотвращения обильного газовыделения. Такие аккумуляторы критичны к температуре окружающей среды.

Батареи третьего поколения - геметизированные батареи с абсорбированным сепараторами электролита (AGM - absorbed in glass mat).. Такой сепаратор из стекловалокна, представляет собой пористую систему, в которой капиллярные силы удерживают электролит. При этом количество электролита дозируется так, чтобы мелкие поры были заполнены, а крупные оставались свободными для свободной циркуляции выделяющихся газов. Благодаря тонкой структуре волокон обеспечивается высокая скорость переноса кислорода. Использование стекловолокнистого сепаратора и плотная сборка блока электродов способствует также уменьшению оплывания активной массы положительного электрода и разбуханию губчатого свинца на отрицательном электроде. Газообразование в них существенно меньше, чем в гелевых, меньше оказывает влияние на работу температура окружающей среды. Хотя требования к ЗУ такие же, как и для гелевых.

Для обозначения типа аккумуляторной батареи указывают ее маркировку, которая определяется конструкцией положительных пластин

Маркировка

Особенности конструкции

Стандарт

GroE

Стационарные батареи с поверхностными положительными пластинами

DIN 40732/ DIN 40738

OPzS

Стационарные батареи с панцирными положительными пластинами и разделителями

DIN 40736/ DIN 40737

Стационарные батареи с решетчатыми положительными пластинами

DIN 40734/ DIN 40739

Моноблочные батареи с решетчатыми положительными пластинами

DIN 43534

В СКА электролитом является раствор серной кислоты, активным веществом положительных пластин - оксид свинца, отрицательных - свинец. В гелевых аккумуляторах жидкий электролит заменили гелеобразным абсорбированным сепараторами электролит, батареи герметизировали, а для отвода газа, выделяющегося при заряде или разряде, установили безопасные клапаны. Были разработаны новые конструкции пластин на основе медно-кальциевых сплавов, покрытых оксидом свинца, на основе титановых, алюминиевых и медных решеток.

При изготовлении СКА применяют химические добавки. Например к свинцу добавляют сурьму (доля в сплаве 1-10%), которая обеспечивает более прочный электрический контакта активного материала с решеткой, предотвращает его осыпание, что позволяет увеличить срок службы батарей. Также используются свинцово-кальциевые сплавы, позволяющие сделать пластины более легкими и прочными при сохранении высоких электрических и механических характеристик.

Следует обратить внимание, что увеличить емкость свинцовой батареи можно сравнительно легко, например, добавив в батарею никель, при этом понизится также и себестоимость, но при этом ухудшится и безопасность.

Корпус для батареи изготавливают призматической формы из пластмассы. Хотя существуют батареи цилиндрической формы. Они обеспечивают более высокую стабильность в работе, больший ток разряда, лучшую температурную стабильность.

Основные проблемы при создании герметичного варианта СКА связаны с необходимостью обеспечения условий для уменьшения газовыделения и содействия рекомбинации выделяющегося газа.

Для этого предпринят ряд мер:

1. Использование иммобилизированного (обезвоженного) электролита, который сохраняет высокую электропроводность серной кислоты. Малое его количество позволяет обеспечить лучший транспорт кислорода от положительного электрода к отрицательному и высокий уровень его рекомбинации.

2. Для уменьшения вероятности выделения водорода свинцово-сурьмяные сплавы токоведущих решеток заменяют другими (сплав свинца и кальция до0,1 % Ca , иногда легированного алюминием, сплавы свинца с оловом 0,5-2,5 % Sn ), обеспечивающими более высокое перенапряжение выделения водорода.

3. В отрицательный электрод закладывается емкость больше, чам в положительный. В этом случае при полном заряде положительного электрода оставшаяся недозаряженной часть активной массы отрицательного электрода практически исключает возможность разряда ионов водорода. Кислород, выделяющийся на диоксиде свинца, достигает отрицательного электрода и окисляет губчатый свинец до оксида свинца, который в кислотном электролите переходит в сульфат свинца PbSO 4 и воду. Т.о. газы не выделяются и вода не теряется.

И все же варианты безуходного СКА снабжены аварийным клапаном. При нарушении режимов заряда, при повышенном токе, в батарее происходит активное газообразование (главным образом водорода). Когда давление газов достигнет величины 7,1 … 43,6 кПа откроется предохранительный клапан для обеспечения вентиляции батареи, и благодаря этому устраняется опасность ее взрыва. Поэтому аккумуляторы называются не герметичными, а герметизированными. Другая роль клапана - предотвращение попадания внутрь корпуса атмосферного кислорода во избежание его реакции с активным материалов негативных пластин.

Аккумуляторы содержащие предохранительный клапан называют аккумуляторы VRLA (valve regulated lead acid batteries ) .

Напряжение на элементе СКА - 2,2 В

Среди всех типов аккумуляторов СКА отличаются наименьшей энергетической плотностью. Это делает нецелесообразно их использование в переносных устройствах. Современные герметизированные СКА обладают следующими удельными характеристиками - 40 Втч/ч и 100 Втч/дм3. Они работают в буферном режиме до 10 лет, при циклировании они обеспечивают несколько сотен циклов до безвозвратной потери 20% емкости.

Их продолжительный заряд не станет причиной выхода из строя батареи.

Способность сохранять заряд у этих батарей наилучшая из всех типов аккумуляторных батарей (саморазряд - 40% в год). Они недороги, но эксплуатационные расходы на них выше, чем на те же НКА.

Время заряда СКА составляет 8…16 часов

Номинальной емкостью СКА считается емкость, полученная при разряде в течение 20 часов, т. е. током 0,05С.

В зависимости от глубины разряда и рабочей температуры ресурс СКА может составлять от 1года до 20 лет. В значительной степени срок службы определяется конструкцией элементов батареи.

Главная опасность эксплуатации батареи с неоднородными аккумуляторами определяется тем, что при циклировании с большим количеством аккумуляторов отклонения электрических характеристик одного из них от стандартных незаметны. Но аккумулятор с повышенным сопротивлением будет разогреваться значительно больше остальных, что ведет к повышенным потерям воды и быстрой деградации всей батареи.

Преимущества СКА :

Дешевизна и простота производства - по стоимости 1 Вт ч энергии эта батарея является самой дешевой;

Отработанная, надежная и хорошо понятная технология обслуживания;

Малый саморазряд;

Низкие требования по обслуживанию (отсутствие «эффекта памяти»);

Допустимы высокие токи разряда.

Недостатки СКА :

Не допускается хранение в разряженном состоянии;

Низкая энергетическая плотность;

Допустимо лишь ограниченное количество циклов заряда/разряда;

Кислотный электролит и свинец оказывают вредное воздействие на окружающую среду;

Типы свинцово-кислотных аккумуляторов

На текущий момент на рынке аккумуляторов наиболее распространены следующие типы:

    - SLA (Sealed Lead Acid) Герметичные свинцово-кислотные или VRLA (Valve Regulated Lead Acid) клапанно-регулируемые свинцово кислотные. Изготовлены по стандартной технологии. Благодаря конструкции и применяемых материалов, не требуют проверки уровня электролита и доливки воды. Имеют невысокую устойчивость к циклированию, ограниченные возможности работы при низком разряде, стандартный пусковой ток и быстрый разряд.

    - EFB (Enhanced Flooded Battery) Технология разработана фирмой Bosch. Это промежуточная технология между стандартной и технологий AGM. От стандартной такие аккумуляторы отличаются более высокой устойчивостью к циклированию, улучшен прием заряда. Имеют более высокий пусковой ток. Как и у SLA\VRLA, есть ограничения работы при низкой заряженности.

    - AGM (Absorbed Glass Mat) На текущий момент лучшая технология (по соотношению цена\характеристики). Устойчивость к циклированию выше в 3-4 раза, быстрый заряд. Благодаря низкому внутреннему сопротивлению обладает высоким пусковым током при низкой степени заряженности. Расход воды приближен к нулю, устойчива к расслоению электролита благодаря абсорбции в AGM-сепараторе.

    - GEL (Gel Electrolite) Технология, при которой электролит находиться в виде геля. По сравнению с AGM обладают лучшей устойчивостью к циклированию, большая устойчивость к расслоению электролита. К недостаткам можно отнести высокую стоимость, и высокие требования к режиму заряда.

Существуют еще несколько технологий изготовления аккумуляторов, как связанных с изменением формы пластин, так и специфическими условиями эксплуатации. Не смотря на различие технологий, физико-химические процессы протекающие при заряде - разряде аккумулятора одинаковые. По-этому алгоритмы заряда различных типов аккумуляторов практически идентичны. Различия,в основном, связаны со значением максимального тока заряда и напряжения окончания заряда.

Например, при заряде 12-ти вольтового аккумулятора по технологии:

Определение степени заряженности аккумулятора

Есть два основных способа определения степени заряженности аккумулятора, измерение плотности электролита и измерение напряжения разомкнутой цепи (НРЦ).

НРЦ - это напряжение на аккумуляторе без подключенной нагрузки. Для герметичных (не обслуживаемых) аккумуляторов степень заряженности можно определить только измерив НРЦ. Измерять НРЦ необходимо не раньше, чем через 8 часов после остановки двигателя (отключения от зарядного устройства), с помощью вольтметра класса точности не ниже 1.0. При температуре аккумулятора 20-25оС (по рекомендации фирмы Bosch). Значения НРЦ приведены в таблице.

(у некоторых производителей значения могут отличаться от приведенных) Если степень заряженности аккумулятора меньше 80%, то рекомендуеться провести заряд.

Алгоритмы заряда аккумуляторов

Существуют несколько наиболее распространенных алгоритмов заряда аккумулятора. На текущий момент большинство производителей аккумуляторов рекомендуют алгоритм заряда CC\CV (Constant Current \ Constant Voltage – постоянный ток \ постоянное напряжение).


Такой алгоритм обеспечивает достаточно быстрый и «бережный» режим заряда аккумулятора. Для исключения долговременного пребывания аккумулятора в конце процесса заряда, большинство зарядных устройств переходит в режим поддержания (компенсации тока саморазряда) напряжения на аккумуляторе. Такой алгоритм называется трехступенчатым. График такого алгоритма заряда представлен на рисунке.

Указанные значения напряжения (14.5В и 13.2В) справедливы при заряде аккумуляторов типа SLA\VRLA,AGM. При заряде аккумуляторов типа GEL значения напряжений должны быть установлены соответственно 14.1В и 13.2В.

Дополнительные алгоритмы при заряде аккумуляторов

Предзаряд У сильно разряженного аккумулятора (НРЦ меньше 10В) увеличивается внутреннее сопротивление, что приводит к ухудшению его способности принимать заряд. Алгоритм предзаряда предназначен для «раскачки» таких аккумуляторов.

Асимметричный заряд Для уменьшения сульфатации пластин аккумулятора можно проводить заряд асимметричным током. При таком алгоритме заряд чередуется с разрядом, что приводит к частичному растворению сульфатов и восстановлению емкости аккумулятора.

Выравнивающий заряд В процессе эксплуатации аккумуляторов происходит изменение внутреннего сопротивления отдельных «банок», что в процессе заряда приводит неравномерности заряда. Для уменьшения разброса внутреннего сопротивления рекомендуется проводить выравнивающий заряд. При этом аккумулятор заряжают током 0.05...0.1C при напряжении 15.6...16.4В. Заряд проводиться в течении 2...6 часов при постоянном контроле температуры аккумулятора. Нельзя проводить выравнивающий заряд герметичных аккумуляторов, особенно по технологии GEL. Некоторые производители допускают такой заряд для VRLA\AGM аккумуляторов.

Определение емкости аккумулятора

В процессе эксплуатации аккумулятора его емкость уменьшается. Если емкость составляет 80% от номинальной, то такой аккумулятор рекомендуется заменить. Для определения емкости аккумулятор полностью заряжают. Дают отстояться в течении 1....5 часов и затем разряжают током 1\20С до напряжения 10.8В (для 12-ти вольтового аккумулятора). Количество отданных аккумулятором ампер-часов является его фактической емкостью. Некоторые производители используют для определения емкости другие значения тока разряда, и напряжения до которого разряжается аккумулятор.

Контрольно-тренировочный цикл

Для уменьшения сульфатации пластин аккумулятора одна из методик это проведение контрольно тренировочных циклов (КТЦ). КТЦ состоят из нескольких последовательных циклов заряда с последующим разрядом током 0.01...0.05С. При проведении таких циклов, сульфат растворяется, емкость аккумулятора может быть частично восстановлена.

Серийный выпуск и массовая эксплуатация свинцово-кислотных аккумуляторных батарей были начаты еще в конце 19 века. В начале 20 века они начали широко применяться в автомобилях, развивая далее сферу своего применения, легко перешагнули рубеж тысячелетия и до сих пор продолжают оставаться надежными, долговечными, не требующими высоких эксплуатационных затрат и относительно дешевыми источниками энергии.

Аккумулятор — это химический источник тока, способный многократно преобразовывать химическую энергию в электрическую и аккумулировать, запасать ее на длительное время. Упрощенно аккумулятор можно представить следующим образом: два электрода, в виде пластин, помещены в раствор серной кислоты с плотностью 1,27-1,29 г/см 3 . При этом положительный электрод выполнен из двуокиси свинца (PbO 2), а отрицательный из свинца (Pb). При прохождении тока между ними протекают окислительно-восстановительные реакции.

При разряде происходит химическая реакция, в результате которой активная масса обоих электродов начнет изменять свой химический состав, преобразуясь из губчатого свинца и его двуокиси в сернокислый свинец (сульфат свинца — PbSO 4), а плотность электролита начнет падать. В результате внутри батареи образуется направленное движение ионов и в цепи потечет электрический ток. При заряде аккумулятора происходит обратный процесс — направление тока меняется на противоположное, активные массы восстанавливают свой первоначальный химический состав, а плотность электролита растет. Процесс этот, называемый циклом, может быть многократным. Количество запасаемой при этом электрической энергии зависит от площади активного взаимодействия электродов и электролита и его объема. Номинальное напряжение, вырабатываемое таким аккумулятором, составляет 2 вольта. Для получения большего значения напряжения одиночные аккумуляторы соединяют последовательно. Например: 12-ти вольтовый аккумулятор состоит из шести аккумуляторов, последовательно соединенных в общем корпусе.

По конструкции свинцово-кислотные аккумуляторы бывают обслуживаемые и необслуживаемые . Обслуживаемые требуют в процессе эксплуатации определенного ухода (контроля уровня и плотности электролита). Необслуживаемые — являются герметичными (точнее, герметизированными), работают в любом положении и не требуют ухода.

В международной интерпретации принято обозначение в виде SEALED LEAD ACID BATTERY (герметичная свинцово-кислотная батарея) или сокращенно SLA, а также VRLA — Valve Regulated Lead Acid (свинцово-кислотные с регулируемым клапаном) батареи, имеющие сернокислый электролит в виде геля или связанная в стекловолокне (AGM). Такие аккумуляторные батареи имеют более высокие электрические и эксплуатационные параметры.
Применение такие батареи находят в качестве резервных источников в системах сигнализации и охраны и медицинском оборудовании. Однако самое широкое применение они имеют в (ИБП), а также в системах автономного электроснабжения на базе возобновляемых источников энергии.

Есть следующие основные типы свинцовых аккумуляторных батарей, которые можно применять в системах автономного электроснабжения:

Ниже приведена более подробная информация по герметизированным аккумуляторам.

Аккумуляторные батареи с технологией AGM

Такие АБ имеют большую, по сравнению со стартерными батареями, толщину пластин электродов, поэтому срок их службы в режиме длительного разряда намного превышает срок работы стартерных батарей.

AGM аккумуляторы обычно используются в резервных системах электроснабжения , т.е. там, где батареи в основном находятся на подзаряде, и иногда, во время перебоев в электроснабжении, отдают запасенную энергию.

Тем не менее, в последнее время появились AGM батареи, которые рассчитаны на более глубокие разряды и цикличные режимы работы. Конечно, они не «дотягивают» до гелевых, но работают удовлетворительно и с автономных системах электроснабжения, в т.ч. и солнечных. Смотрите . AGM аккумуляторы обычно имеют максимальный разрешенный ток заряда 0,3С, и конечное напряжение заряда 14,8-15В. Для их заряда лучше применять специальные зарядные устройства для герметизированных аккумуляторов .

Гелевые аккумуляторные батареи

Для автономных систем электроснабжения нужно выбирать аккумуляторы «глубокого разряда» (например ProSolar серий D или DG , а еще лучше аккумуляторы OPzV). Если можно выделить специальное помещение для аккумуляторов с соблюдение всех условий (вентиляция, пожаробезопасность) и есть обученный персонал, которые может обслуживать аккумуляторы с жидким электролитом, можно применять аккумуляторы глубокого разряда с жидким электролитом — OPzS , тяговые для электрических машин или другие с повышенным допустимым разрядом (например, Rolls).

Если такие условия не выполняются, лучше остановиться на герметичных аккумуляторах — они немного дороже, но гораздо проще в эксплуатации.

Продолжить чтение

    Какой тип аккумулятора выбрать - AGM, гелевый или с жидким электролитом? Определяющими факторами при выборе аккумуляторных батарей для вашей системы являются цена, условия, при которых будет работать батарея (температура, условия обслуживания, наличие специального помещения и т.п.), а также ожидаемый срок…

    Технологии аккумулирования энергии в системах автономного электроснабжения По материалам сайта:modernoutpost.com В этой заметке содержатся общие советы по выбору аккумуляторов для систем с возобновляемыми источниками энергии. В заметке затронуты 3 основные технологии: литий-ионные, никель-металл-гидридные и свинцово-кислотные (AGM, или Gel). Мы постараемся…