Этапы развития бортового оборудования. Что такое авионика? электронное оборудование на борту самолетов Бортовое радиоэлектронное оборудование самолета

Авионикой принято обозначать весь комплекс электронного оборудования, которое установлено на борту самолетов. Очень часто параллельно со словом «авионика» используется аббревиатура БРЭО, что расшифровывается как бортовое радиоэлектронное оборудование. Базовыми элементами электронного оборудования являются системы навигации, коммуникации и управления. Что касается оборудования управления, то это очень большое количество систем, начиная от поисковых прожекторов и заканчивая современными радарами.

В отечественной авиации принято разделять специалистов по силовым установкам и самолету. Соответственно, одни занимаются авиационными системами, а другие – радиоэлектронным оборудованием.

SSJ-100 авионика

ВВС Российской Федерации имеет четкое деление бортового оборудования на БРЭО и авиационное оборудование. БРЭО создано для излучения или приема радиоволн. Что касается авиационного оборудования, то это приборы, механизмы, агрегаты, которые в своей работе используют электрический ток, но при этом радиоволны отсутствуют. Также военные летательные аппараты могут быть оснащены электронным оружием, но они являются отдельной частью оборудования.

В отечественном авиастроении понятие «авионика» практически не используется, поскольку принятым считается обозначение БРЭО – бортовое радиоэлектронное оборудование – и АО – авиационное оборудование.

История развития авионики

Само понятие «авионика» начало использоваться в западных странах с 1970 года. Именно в это время электроника достигла высокого технического уровня, что позволило использовать электронные системы на бортах летательных аппаратов. В эти годы были созданы первые бортовые компьютеры для самолетов. Кроме этого, начали использовать большое количество автоматических систем контроля и управления.

Изначально авионику и электронное оборудование для автоматизации начали заказывать военные для выполнения большого круга военных задач и повышения точности выполнения боевых миссий. В итоге боевые машины стали настолько зависимы от бортового электронного оборудования, что полеты выполнялись в зависимости от выбранных режимов электронного управления. За счет усовершенствования самолетов БРЭО также не отставало в развитии. На сегодняшнее время бортовое оборудование занимает немалую часть материальных затрат на изготовление самолетов. Так, например, при изготовлении самолетов типа F-14 20% общей стоимости всего самолета отведено на авионику. Подобные системы широко применяются и в гражданской авиации, что позволяет автоматизировать и упростить процессы управления машиной.

Современный состав авионики самолетов

Оборудование для управления летательным аппаратом:

  • Система навигации.
  • Система индикации.
  • Система связи.
  • Система, осуществляющая управление полетом, типа FCS.
  • Система, отвечающая за предупреждение столкновения в воздухе, типа TCAS.
  • Общая система управления.
  • Оборудование метеонаблюдения.
  • Оборудование регистрации всех параметров полета. Это бортовые самописцы и средства контроля.

Оборудование управления вооружением:

  • Сонары.
  • Электронно-оптическое оборудование.
  • Радары.
  • Системы для поиска и фиксации цели.
  • Аппаратура для управления вооружением.

Интерфейсы в авионике

Всемирно принятые стандарты коммуникации:

  • MIL-STD-1553.
  • ARINC 664.
  • ARINC 629.
  • AFDX.
  • ARINC 717.
  • ARINC 708.
  • ARINC 429.

Конструктивы:

  • MicroPC.
  • PC/104Plus.
  • PC/104.

Шины расширения:

  • VMEbus.

Бортовое радиоэлектронное оборудование истребителя F-35

Майор Г. Антонов

В Соединенных Штатах осуществляется полномасштабная разработка перспективного тактического истребителя по программе JSF (Joint Strike Fighter), который получил официальное обозначение F-35. Главной ее целью является создание нового боевого самолета с высокими тактико-техническими характеристиками и единой конструкцией для ВВС, авиации ВМС и морской пехоты США. Он станет основным самолетом тактической авиации и заменит состоящие в настоящее время на вооружении тактические истребители (F-16 «Файтинг Фалкон», F/A-18 «Хорнет») и штурмовики (А-10 «Тандерболт» и AV-8B «Харриер-2»).
При разработке бортового радиоэлектронного оборудования (БРЭО) самолета специалисты использовали результаты перспективных исследований в области оптоэлектронного (ОЭ) и радиолокационного оборудования, индивидуальных средств радиоэлектронной борьбы (РЭБ), а также ЭВМ и программного обеспечения. Эти машины имеют высокую степень интеграции датчиков с возможностью обмена разведывательными данными и информацией о радиоэлектронной обстановке, что позволит каждому пилоту ориентироваться в обстановке на всем театре военных действий. Кроме этого, для снижения нагрузки пилота был установлен принципиально новый интерфейс с возможностью голосового управления самолетом.
На стадии начального проектирования планировалось, что истребитель не будет иметь активных средств разведки и пилот будет получать информацию со специальных разведывательных самолетов, спутников и от других источников. Эта мера позволила бы снизить затраты на его оборудование, однако в связи с развитием элементной базы было подсчитано, что содержание отдельных разведывательных самолетов обойдется дороже и будет менее ко эффективно, чем оснащение истребителей разведывательным оборудованием. Кроме того, большое число самолетов с чувствительными датчиками, связанными высокоскоростными линиями передачи данных, позволит обеспечить полное информационное превосходство над полем боя.
Радиолокационная станция (РЛС) четвертого поколения и комплекс РЭБ самолета F-35 (рис. 2) объединены в многофункциональную интегрированную систему (МИС). На станции будет установлена активная фазированная антенная решетка (АФАР), за основу которой взята антенна станции APG-77. Это позволит использовать ее для радиолокационной и радиотехнической разведки, РЭБ и связи.
АФАР состоит из 1 000-1 200 приемопередающих модулей (ППМ), связанных высокоскоростными процессорами. На разные ППМ в раскрыве антенны могут возлагаться различные задачи. В связи с тем что диаметр антенны ограничен размерами фюзеляжа, общее число ППМ уменьшается на треть (по сравнению с АФАР APG-77), что приводит к снижению дальности обнаружения целей до 165 км. Станция должна работать в диапазоне частот 8-12,5 ГГц (по некоторым данным, 6-18 ГГц).

Такая широкополосность будет обеспечиваться варьированием размеров и форм излучателей ППМ и позволит одновременно формировать две диаграммы направленности (на разной частоте), обеспечивая работу РЛС в следующих режимах:
- обнаружения и сопровождения воздушных и наземных целей;
- пассивного пеленгования наземных РЛС;
- передачи сигналов коррекции на УР класса «воздух - воздух»;
- синтезирования апертуры РЛС;
- селекции движущихся наземных целей (в том числе малоскоростных);
- сверхвысокого разрешения (до 0,3-0,9 м);
- моноимпульсного картографирования местности;
- обмена данными с другими самолетами. Кроме того, то, что РЛС сможет работать в широком диапазоне длин волн со случайной перестройкой частоты повторения импульса в пакете, повышает ее помехозащищенность. В зависимости от выбранного режима работы будет изменяться ее несущая частота: более низкая частота будет использоваться в режиме синтезирования апертуры, а более высокая - для обнаружения воздушных целей на большой дальности. Обтекатель антенны должен быть радиопрозрачен в широком диапазоне длин волн.
Луч диаграммы направленности антенны способен сканировать пространство, перемещаясь от одной точки к другой со скоростью несколько миллионов раз в секунду, поэтому каждая цель будет подсвечена до 15 раз в секунду. Ресурс антенны составляет около 8 000 ч.
К основным способам постановки помех, используемым в РЛС, относятся: срыв сопровождения по дальности, скорости и адаптивная кроссполяризационная помеха.
В МИС кроме РЛС входит комплекс средств РЭБ, главным разработчиком которого является фирма «БАе системз». Он будет проектироваться на основе аппаратуры РЭБ тактического истребителя F-22. Все оборудование намечается разместить под обшивкой летательного аппарата. Для точного определения направления прихода сигнала и дальности до источника в системе предупреждения об облучении используется корреляционный интерферометр, на вход которого будут поступать данные с расположенных на крыльях антенн и РЛС. Дополнительно оборудование РЭБ будет включать устройство выброса дипольных отражателей и специально разработанных многоспектральных инфракрасных (ИК) ловушек. Пилот истребителя сможет получать информацию от других самолетов через тактическую линию передачи данных, что позволит ему иметь представление об обстановке на всем театре военных действий. Ожидаемое время наработки на отказ комплекса 440 ч.
Для получения информации в видимом и ИК-диапазонах частот на борту самолета будет размещена интегрированная ОЭ-сис-тема, которая включает в свой состав подсистему с распределенной апертурой (DAS - Distributed Aperture System) и оптоэлект-ронную прицельную подсистему (ОЭПП).
Установить ОЭПП планируется в носовой части под фюзеляжем самолета. В качестве ее прототипа предполагается использовать систему «Снайпер-XR», разработанную для самолета F-16. Размещение подсистемы на истребителе позволит экипажу самостоятельно осуществлять поиск, обнаружение, распознавание и автоматическое сопровождение наземных тактических целей в пассивном режиме на дальности 15-20 км в любое время суток, а также поиск и сопровождение воздушных целей. Лазер даст возможность наводить управляемое высокоточное оружие, в том числе новейшее J-серии, и поражать важные наземные и морские цели (узлы связи, транспортные узлы, заглубленные командные пункты, склады, надводные корабли т. д.) с высокой точностью (рис. 3).
ОЭПП включает инфракрасную камеру переднего обзора, работающую в диапазоне длин волн 8-12 мкм, телевизионную камеру на приборах с зарядовой связью, лазерный дальномер-целеуказатель и лазер-маркер. На дисплее, расположенном в кабине пилота, может отображаться информация, поступающая от телевизионной и ИК-систем в реальном масштабе времени.
Главными особенностями этой подсистемы являются использование новейших алгоритмов обнаружения и распознавания наземных объектов по получаемому двухмерному изображению и стабилизация оптоэлектронного блока на основе перспективных технологий, которые позволили повысить точностные характеристики системы более чем в 3 раза по сравнению с аналогичными.
Для предотвращения повреждений датчиков ОЭПП (расположенных стационарно и имеющих широкую апертуру) будет установлено сапфировое стекло, обладающее высокой прочностью и являющееся прозрачным для видимого и ИК-диапазонов длин волн, но не пропускающее радиолокационные сигналы. Максимальная дальность действия лазера 40-50 км. Углы паля зрения: узкий 0,5 х 0,5°, средний 1 * Г.широкий 4 ■ 4=. Планируемое время наработки на отказ порядка 700 ч.
Подсистема DAS включает в свой состав шесть ИК-датчиков, обеспечивающих обзор пространства во всех направлениях. Информация с них может проектироваться на нашлемную прицельную систему, что даст возможность пилоту видеть обстановку в ИК-спектре под самолетом, а кроме того, она будет использоваться в качестве вспомогательного средства навигации. Предполагается, что установка на истребитель этой подсистемы с распределенной апертурой позволит сократить 30 проц. стоимости и снизить в 2 раза общую массу ИК сенсоров.
Одно из самых важных мест в БРЭО самолета F-35 занимает ССНО. Она выполняет задачи опознавания принадлежности самолета, навигации, закрытой многоканальной многодиапазонной голосовой связи, межсамолетного обмена
данными и синхронизации дисплеев нескольких самолетов. Принимаемый сигнал обрабатывается внутри системы, а на ее выход подается информация высокого уровня. Планируется, что ССНО будет работать (излучать и принимать) более 35 различных форм сигналов в диапазоне частот 30 МГц-^0 ГГц. В состав системы входят следующие основные модули: широкополосный модуль, выполняющий аналогово-цифровое преобразование и обработку сигнала; двухканальный приемопередатчик, который принимает и переводит в цифровую форму сигналы сверхширокого диапазона и выдает сигналы управления мощностью усилителя; аппаратура энергоснабжения; процессоры ССНО, которые выполняют обработку сигнала, данных и засекреченной связи; блоки интерфейса.
Вся необходимая информация с датчиков, после обработки в интегрированном центральном процессоре (ИЦП) будет поступать на дисплей в кабине пилота по оптоволоконной линии передачи данных (2 Гбит/с). Одним из главных требований к оборудованию кабины является возможность ее недорогой и быстрой модернизации за счет использования совершенных систем обработки информации, графических процессоров и многофункциональных дисплеев. В системе отображения должна найти широкое применение элементная база коммерческого производства.
В системе отображения информации, установленной в кабине, планируется применить две новые технологии: «Биг пикчер» и «Виртуальная кабина». Элементы этих технологий были наглядно продемонстрированы на действующем макете кабины самолета F-35.
Хотя в настоящее время на F-35 используются два установленных рядом широкоформатных дисплея с активной матрицей (AMLCD - Active Matrix Liquid Crystal Display) с размером поля 20,3 х 25,4 см, ведутся работы над тем, чтобы заменить их одним общим дисплеем с размером поля 20,3 х 50,8 см. Этот монитор будет занимать всю верхнюю часть приборной панели и должен выполнять роль индикатора общей ситуационной информации. На нем будет отражаться тактическая обстановка (текущие координаты самолета, маршруты, их промежуточные пункты, расположение боевых средств противника и своих войск). Информация на дисплей должна поступать с РЛС или оптоэлектронной системы, что позволит производить целеуказание в любых погодных условиях.
Жидкокристаллические мониторы имеют более 256 оттенков и обладают высокой разрешающей способностью (1 280 х 1 024 пиксела на дюйм).
Говоря о технических возможностях системы отображения информации, следует отметить следующие ее особенности:
- отказ от индикации на лобовом стекле и полный перенос этой функции на нашлемную систему целеуказания и отображения информации на защитном щитке шлема летчика;
- речевое управление отдельными функциями системы отображения информации и системы управления вооружением самолета (обычными речевыми указаниями летчик может переключать режимы работы различного оборудования и давать команды на применение оружия);
- использование экспертных систем, обеспечивающих анализ текущей информации и выработку инструкций летчику о целесообразных действиях. Благодаря оперативному планированию полетного задания выживаемость самолета в ходе его боевого применения повышается в большей степени, чем за счет использования специальных конструктивных решений и средств повышения живучести. Отображаемая на широкоформатном дисплее информация об обстановке содержит данные о текущем положении самолета на маршруте и расположении боевых средств противника (ЗРК и находящихся в воздухе летательных аппаратах), полученная путем обобщения сведений от различных (в том числе внешних) источников информации. Нанесение ЭВМ секторов действия средств поражения противника на движущуюся карту местности облегчает пилоту задачу маневрирования. На ней отображаются также зоны применения собственного оружия.
В 2000 году впервые был продемонстрирован один из новейших компонентов самолета F-35, так называемый «бортовой интеллект», реализуемый с помощью специального программного обеспечения. Это было сделано путем демонстрации информационно-управляющего поля кабины самолета не в статическом виде, а режиме виртуальной реальности, практически полностью воспроизводящей управление авиационным боевым комплексом в ходе его применения.
Система «бортового интеллекта» была создана в ходе реализации комплексной программы в области вычислительной техники и бортовых систем, последнее время проводившейся под общим руководством управлением перспективных исследований МО США (DARPA). Ее важной составляющей частью являлась разработка системы «Помощник летчи-
ка». На основе сбалансированного сочетания обычных алгоритмов управления и технологии искусственного интеллекта эта система должна обеспечить информационную поддержку в следующих ситуациях:
- боевые условия значительно отличаются от прогнозируемых;
- непредвиденная угроза заставляет пересмотреть первоначальную задачу;
- в результате отказа бортовых подсистем, ухудшения характеристик или полученного в бою повреждения необходимо внести изменения в боевую задачу;
- летчик перегружен некоррелированными данными.
Система рассчитана на выполнение функций: определение состояния бортовых систем; оценка ситуации; планирование и определение тактики выполнения боевой задачи; обеспечение взаимодействия летчика с авиационным комплексом.
Важным элементом системы управления полетом самолета F-35 является автопилот. Его возможности расширены за счет комплексирования с экспертной системой предупреждения о столкновении и обходе препятствий. Используя базу данных о рельефе местности, автопилот определяет минимальную высоту над поверхностью, с которой можно получить устойчивое и четкое изображение цели в режиме синтезирования апертуры, и обеспечивает безопасный полет.
Большое значение при разработке истребителя уделялось бортовой ЭВМ, ключевым элементом которой является ИЦП. Последний будет получать информацию с различных датчиков, размещенных на самолете, с последующей обработкой и анализом возможных вариантов принятия решения. Параллельно с ИЦП данные обрабатываются в модулях планирования поиска (МПП), атаки и облета мест нежелательного столкновения с противником.
МПП предназначен для более эффективного обнаружения наземных целей на основе критериев выделения их на рельефе местности. Например, по данным от датчиков будет выделяться колонна танков, исходя из особенностей местности, сети дорог, взаиморасположения и скорости транспортных средств. Система сможет также осуществлять запрос (в диалоговом режиме на дисплее или с помощью речевого синтезатора и анализатора) у командира эскадрильи о количестве самолетов в группе и после получения ответа показывать оптимальное место поиска колонны танков для каждого самолета, подсвечивая на карте наиболее вероятные места ее нахождения.
После захвата цели (или группы целей) модуль планирования атаки предоставит пилоту информацию об оптимальном маневре с учетом угроз, а при необходимости пошлет запрос экипажам других самолетов об оказании поддержки и прикрытии самолета.
Бортовая ЭВМ с ИЦП истребителя F-35 размещается в двух блоках, имеющих 23 и 8 слотов. Она позволяет объединять управление отдельными задачами и оружием, а также выполнять специальную функцию обработки сигналов. Быстродействие ИЦП будет на уровне 40,8 млрд опер./с, процессора обработки сигналов - 75,6 млрд с плавающей запятой, а процессора обработки и формирования изображения -225,6 млрд операций сложения/умножения. Конструкция ЭВМ включает 22 модуля семи различных типов:
- четыре универсальных процессорных модуля;
- два модуля входа/выхода на универсальный процессор;
- два модуля обработки сигналов;
- пять модулей входа/выхода процессора обработки сигналов;
- два модуля обработки изображения;
- два коммутатора;
- пять блоков электропитания.
Кроме этого, ИЦП имеет разъемы для установки съемных модулей и дополнительного блока электропитания. В нем применяются стандартные 128-битные микропроцессоры гражданского назначения «Моторола G4» Power PC.
Во всех модулях для обработки данных применяется операционная система (ОС), работающая в реальном масштабе времени, фирмы «Грин хилз софтвэа интегрити» и ОС фирмы «Меркури компьютер систем» для обработки сигналов.
Соединение модулей ИЦП осуществляется через два коммутатора с 32 портами каждый путем подключения их к последовательной высокопроизводительной шине стандарта IEEE 1394B со скоростью 400 Мбит/с, благодаря чему обеспечивается связь ИЦП и ССНО с системой управления летательным аппаратом (СУПА), которая выполняет функции контроля и эффективного использования топливной, электрической, гидравлической и других систем самолета. В состав ЭВМ СУПА входят два таких же процессора, как и в универсальный модуль ИЦП. Открытая архитектура и применение гражданских комплектующих значительно сокращают затраты на оборудование и его последующую модернизацию. В мае 2003 года была собрана первая ЭВМ СУЛА, а окончательный ее вариант планируется получить к концу 2005-го.
Обработка поступающих сигналов на первоначальном этапе (нижнем уровне) будет производиться непосредственно в системах сбора информации, а большинство процессов высокого уровня - в ЭВМ ИЦП. Например, РЛС сможет генерировать форму сигнала и преобразовывать его из аналогового вида в цифровой, но информация о дальности до цели и результатах сканировании луча будет передаваться в ЭВМ ИЦП, с выхода которой обработанные результаты поступят на дисплей, размещенный в кабине пилота, или на нашлемную систему целеуказания.
Объем программного обеспечения ИЦП истребителя F-35 будет составлять 5 млн командных строк, что в 2 раза больше, чем у F-22. Это вызвано размещением на нем более сложного оборудования, а также возможностью работы с большим числом режимов.
На новом самолете пилоты смогут загружать предполетное задание и копировать информацию (в том числе записанную в видеоформате) на портативное переносное устройство емкостью несколько сотен Гигабайт фирмы «Смиф аэроспейс», которая установит также память большой емкости и файловый сервер на самолет.
В конце октября 2001 года МО США объявило о подписании контракта стоимостью 19 млрд долларов с фирмой «Локхид-Мартин», предусматривавшего разработку и испытание самолета F-35. К концу 2002 года закончился этап проектирования истребителя и обсуждения проекта с последующей его оценкой до середины 2003 года. Общее число полностью укомплектованных самолетов (в соответствии с контрактом) составит 14 единиц. Пять самолетов F-35A с обычным взлетом/посадкой (для ВВС), пять F-35C корабельного базирования (для авиации ВМС) и четыре F-35B с коротким взлетом и вертикальной посадкой (для морской пехоты). Дополнительно МО получит восемь нелетающих самолетов для проведения ряда статических тестов, один F-35C для испытания на ударные нагрузки и один каркас для оценки изменения радиолокационного отражения. Первый полет истребителя F-35A запланирован на октябрь 2005 года, F-35B - на начало 2006-го, a F-35C - спустя девять месяцев.
Программа летных испытаний некоторых элементов оборудования включала два этапа. Первый проходил на самолете лаборатории ВАС 1-11, на борту которого размещены АФАР и ОЭ прицельная демонстрационная система, а также датчики системы с распределенной апер-
турой. Вторая фаза заключалась в интегрировании датчиков «Локхид-Мартин» с программным обеспечением. По итогам тестов, продолжавшихся шесть месяцев, было проведено контрольное испытание по сопровождению самолета F/A-18, выполнявшего роль мишени.
Кроме главного подрядчика в разработке БРЭО для истребителя F-35 принимают участие следующие фирмы: «Кайзер электронике» и «Элбит» - нашлемная система целеуказания, «Белл аэроспейс» - ССНО и ее антенны (одна диапазона частот 2-4 ГГц, две - 0,3-1 ГГц, 2 антенны радиовысотомеров и 3 - диапазона частот 1-2 ГГц на каждый самолет), «Харрис» - оснащение кабины пилота, программное обеспечение обработки изображения и формирование цифровой карты, волоконно-оптические линии, высокоскоростные линии связи и элементы ССНО, «Ханиуэлл» - радиовысотомер, инерциально-навигационная система и КРНС NAVSTAR, «Рэйтеон» - 24-ка-нальный устойчивый к помехам приемник КРНС.
Полномасштабная разработка тактического истребителя F-35 оценивается в
23,8 млрд долларов. Поступление на вооружение первых серийных машин ожидается в 2010 году. Всего для ВС США намечено закупить около 2 600 машин. Полноправный участник программы - Великобритания — обеспечивает 10-процентное финансирование и планирует приобрести около 150 истребителей F-35. Кроме того, на данный момент интерес к новому самолету проявили ряд других государств (Канада, Франция, Германия, Греция, Израиль, Сингапур, Испания, Швеция, Турция и Австралия). Объем экспортных поставок истребителей F-35 может превысить 2 000 машин. Стоимость одного самолета составит 40—50 млн долларов (в зависимости от варианта).
Перспективный тактический истребитель F-35 разработан по программе JSF. Пилот этого самолета сможет эффективно управлять и использовать весь комплекс БРЭО, принимая решение об оптимальной траектории выхода к цели и применении оружия, а также контролировать выполнение боевой задачи на базе информации, поступающей от бортовых датчиков и внешних источников.

Бортовое оборудование - это совокупность приборов, систем и агрегатов, обеспечивающих:

  • управление летательным аппаратом, включая управление угловым положением ЛА и его траекторией при решении транспортных и боевых задач;
  • энергообеспечение ЛА;
  • обеспечение жизнедеятельности экипажа и пассажиров.
Оборудование, предназначенное для управления различными устройствами ЛА, а также обеспечивающее связь ЛА с системами организации воздушного движения и наблюдение за воздушной и наземной обстановкой носит название бортовое радиоэлектронное оборудование (БРЭО) или авионика . Оборудование, обеспечивающее энергоснабжение (гидравлические системы, системы электроснабжения), жизнедеятельность (системы кондиционирования), а также управление выпуском и уборкой шасси, торможением при посадке и прерванном старте называется общесамолетным оборудованием (ОСО) .

Процесс развития авиации в значительной мере обусловлен развитием бортового оборудования.

Эволюция воздушных судов

В 1903 году был совершен первый управляемый полет на машине тяжелее воздуха. С тех пор авиация прошла путь от простейших летательных аппаратов, предназначенных исключительно для демонстрации возможности перемещения в воздушном пространстве, до специализированных многофункциональных воздушных судов, решающих задачи по перевозке пассажиров и грузов, боевые и специальные задачи.

В 1912 году в мире насчитывалось около 1 тысячи самолетов, а к 2012 году - около 28 тысяч самолетов.

Начальный период развития авиации был связан с решением проблем аэродинамики, конструктивных материалов и повышением мощности двигателя. В дальнейшем, особенно с переходом на реактивную тягу и сверхзвуковой полет, роль бортового оборудования значительно возросла. Авиация 21-го века ориентируется на революционные изменения в бортовом оборудовании. Это связано, прежде всего, с бурным развитием радиоэлектроники и новационных процессов в информационных системах. >>>

>>> Эволюция кабины

По мере развития авиации человеческий фактор стал оказывать все большее влияние на безопасность полета. Основой безопасности полетов является полная и своевременная информированность экипажа об условиях полета и состоянии самолета. Интерфейс между экипажем и сложным комплексом бортового оборудования определяет эволюцию информационно-управляющего поля кабины экипажа.

В XX веке: 1940-1970 гг. используются электромеханические индикаторы, в 1980 гг. появляются отдельные электронные индикаторы.

В XXI веке: начало 2000 гг. - электронная индикация («стеклянная» кабина), прогноз на 2020-2040 гг. - интегрированная электронная индикация с трехмерной (3D) синтезированной системой индикации «реальной» обстановки.

Эволюция бортового комплекса

Увеличение количества и сложности функций бортового оборудования явилось причиной перехода от отдельных приборов и устройств к комплексу бортового оборудования, основу которого составили бортовые вычислительные системы.

Переход от простейших аналоговых вычислителей к бортовым цифровым вычислительным системам открыл широкую дорогу к процессам интеграции бортового оборудования и функций управления, что, в свою очередь, обеспечило рост надежности комплекса, несмотря на рост сложности. При этом стоимость комплекса стабилизировалась. >>>

>>> Интегрированная модульная авионика (ИМА) позволила перенести все функции управления на уровень программного обеспечения. Это обеспечило аппаратное построение вычислительной системы в виде набора ограниченного числа стандартных модулей.

Использование операционных систем реального времени, в свою очередь, позволило построить программное обеспечение в виде отдельных функционально-программных модулей.

Модульность аппаратной и программной части - это ключ к унификации, стандартизации и, как следствие, снижению затрат в разработке и производстве.

Простейший контур управления летательным аппаратом представлял собой совокупность тяг и качалок, непосредственно передающих отклонение рычагов управления на управляющие поверхности летательного аппарата. Электромеханические приборы позволяли отслеживать пространственное положение самолета.


Частичная автоматизация пилотирования была достигнута путем введения простейшего автопилота, осуществлявшего стабилизацию высоты полета и улучшающего управляемость летательного аппарата.

Тем не менее, доминирующая роль человека в управлении сохранялась, управление по-прежнему велось по отдельным приборам, а бортовой комплекс на данном этапе еще не был сформирован. >>>

>>> Появление бортового комплекса связано с введением в контур управления специальной вычислительной машины, формирующей траекторию полета и позволяющей решать задачи управления ЛА на траектории (система самолетовождения - FMS).

Под БК стали понимать совокупность управляющей вычислительной машины, приборов и систем, объединенных единой целью управления ЛА.


Первые бортовые комплексы имели одну вычислительную машину и были построены по централизованному принципу на базе аналогового вычислителя.

В дальнейшем бортовой комплекс стал строиться по федеративному принципу, предполагающему наличие нескольких отдельных специализированных вычислителей. При этом каждая функция управления реализуется в отдельных блоках с единым индикационным полем кабины экипажа (EFIS).

Первые федеративные бортовые комплексы были гибридными, так как содержали как аналоговые, так и цифровые вычислители.

Впоследствии аналоговые вычислители были полностью заменены цифровыми с использованием интерфейса связи по стандарту A-429.

Имея большие вычислительные ресурсы, бортовой комплекс стал решать не только задачи управления и индикации, но и интеллектуальной поддержки экипажа (EICAS). При этом роль бортового комплекса в управлении стала доминирующей. >>>

>>> Эволюция федеративного бортового комплекса привела к тому, что количество цифровых блоков, устанавливаемых на борту летального аппарата, за 20 лет возросло в 5 раз.

При этом существенно усложнилось программное обеспечение вычислительных машин. Это привело к проблемам в разработке и отладке программного обеспечения.

Следующая группа проблем была связана с объединением различного оборудования в единый комплекс. «Электронный борт» каждого самолета стал представлять собой уникальный продукт, требующий сложных технологий системной интеграции.

Всякое наращивание управляющих функций требовало повторения процессов системной интеграции и сертификации системы в целом.

Следствием такой архитектуры стало существенное удорожание всего бортового оборудования, увеличение сроков разработки, уменьшение надежности комплекса, и, как следствие, снижение уровня безопасности полетов. >>>

>>> Зарубежный опыт проектирования БК

Анализ удельных временных затрат на проектирование ВС показал, что на разработку оборудования затрачивается около 60% времени, хотя в середине прошлого века этот показатель был на уровне 20-30%.

Как следствие, изменилась и структура затрат на программное обеспечение, которая стала составлять порядка 80% стоимости разработки бортового комплекса. Назрела необходимость революционного изменения архитектуры комплекса.

В качестве решения проблемы была выдвинута идея построения бортового комплекса на принципах интегрированной модульной авионики.

Современная авиация растет и расширяется стремительными темпами. Сегодня лайнеры, поднимающиеся в небо, мощны, красивы и выносливы. Управление ими, естественно, тоже претерпело серьезные изменения. Сегодня появляются новые термины, которые для обывателя не совсем понятны. Так, например, что такое автопилот, все знают, но не имеют представления, что это такое – авионика.

Термин «авионика», как отмечают специалисты, заимствован из английского языка. Сегодня он крайне популярен у тех, кто занят в сфере авиации. Сегодня авионика – это все электронные системы, которые есть на борту самолета. Причем имеются в виду, как самые сложные их варианты, так и простейшие.

Слово происходит от сочетания двух терминов – авиация и электроника. Также ее иногда называют БРЭО, т.е. бортовое радиоэлектронное оборудование. По сути своей под этим термином скрывается комплекс всех систем электронного характера – это системы коммуникации, навигации, отображения разными устройствами и управления ими.

Как говорят специалисты по электронике, называть БРЭО авионикой неправильно. Ведь БРЭО – это оборудование, которое излучает радиоволны, а авиационные приборы этого не делают. Правильным считается следующее деление:

  1. Оборудование воздушного судна
  2. БРЭО – оборудование, что ответственно за прием или излучение в процессе работы радиоволн
  3. Авиационное оборудование (АО) – оборудование, содержащее электронные составляющие, которые используют электроток, но при этом не используют радиоволны

Сам термин появился в 70-х годах 20 века. Именно в этот период появились интегральные технологии и компактные, но отличающиеся высокой производительностью компьютеры на борту самолетов. Кроме того, были разработаны и внедрены принципиально новые автоматизированные системы контроля. Управлять судами стало проще.

Изначально авионика, как и многое другое, была разработана для военных. И сегодня она продолжает там широко применяться. По некоторым данным, доля затрат на информационную составляющую самолета составляет 20% от стоимости лайнера. Сегодня же авионика перешла и на гражданскую авиацию. При этом стоит понимать, что термин этот негласный – ни в одних документах найти его нельзя.

Состав авионики

Сегодня под понятие авионики на борту самолета попадает целый комплекс систем. В их числе:

  • Навигационные варианты
  • Индикация
  • Связь
  • Система, ответственная за полет
  • Система, предупреждающая о риске столкновения в воздухе
  • Управления
  • Метеонаблюдения
  • Самописцы, наблюдающие за всем происходящим на борту, и прочие средства контроля

Если отдельно выделять военные лайнеры, то авионика в них дополнительно представлена такими системами, как:

  • Сонары
  • Радары
  • Фиксация и поиск намеченной цели
  • Управление оружием

Как может применяться — примеры

Как это работает, многим не всегда сразу понятно. Так, например, система связи позволяет искать потенциально уязвимые и незащищенные места в работе лайнера. При обнаружении каких-либо неполадок или неисправностей ими займутся соответствующие специалисты авиапрома – они обнаружат их и устранят.

Система навигации, отвечающая всем современным стандартам, должна помочь пилоту в направлении самолета по заданному маршруту. Также она работает во время выполнения различных маневров, когда лайнер заходит на посадку. Точность расчетов позволяет принимать более адекватные ситуации решения. Кроме того, такой вариант предупреждает, если у пилота глаз замылился, и он что-то делает не так.

Оборудование, предназначенное для регистрации параметров полета – крайне необходимая система на борту современных воздушных лайнеров. Самописцы фиксируют все происходящее в самолете, при необходимости с них можно считать информацию и дать оценку действиям экипажа. Кроме того, такие варианты помогают записывать условия, происходящие на борту, чтобы позже можно было в полной мере их оценить и понять, какие ошибки были допущены. Ярким примером деятельности таких систем на борту самолета являются черные ящики лайнера.

Система метеонаблюдения помогает видеть, как меняется погода за бортом. Ведь за счет высокой скорости ветра и изменения ландшафтов в тех или иных местностях она может меняться крайне быстро. А это оказывает непосредственное влияние на полет. Во-первых, самолет может попасть в сильную зону турбулентности без анализа данных по состоянию и движению воздуха. Во-вторых, грозовые облака, в которые может попасть лайнер, не спрогнозировавший свой курс, могут стать причиной катастрофы. Системы метеонаблюдения дают возможность пилотам своевременно реагировать на изменения условий полета.

Новые технологии в авионике

Все системы и варианты управления не стоят на месте. В том числе и развитие авиационного оборудования. Сегодня инженеры могут работать с микроскопическими и невидимыми глазу частицами, подобными атому. И сегодня на первый план выходит молекулярно-инженерная микротехнология. Но чтобы она стала реальностью и начала работать, надо развивать соответствующие методы.

Развитие микроэлектроники приведет к усложнению схем и уменьшению размеров рисунка. И тут потребуются технологии для создания и обработки рисунков с очень высокой разрешающей способностью. Рисунок будет проявляться под действием света, рентгена, электронных пучков и т.д.

Есть вероятность того, что в ближайшие годы ученые определятся с тем, как работать с интегральными схемами с мельчайшими размерами ряда деталей в них. Их число в одной схеме достигнет по площади несколько квадратных миллиметров, в которых будут заключены десятки миллионов деталей. Планируется изменить и основные материалы – использовать не только кремний, но и иные варианты.

С такими системами самолеты будут работать еще более точно и правильно. У современных же лайнеров появится большее число возможностей.

Авионика (от авиация и электроника ) - совокупность всех электронных систем, разработанных для использования в авиации. На базовом уровне это системы коммуникации , навигации , отображения и управления различными устройствами - от сложных (например, радара) до простейших (например, поискового прожектора полицейского вертолёта).

История

Термин «авионика» появился в начале 1970, когда произошло появление интегральных микроэлектронных технологий и создание на их основе компактных бортовых высокопроизводительных компьютеров, а также принципиально новых автоматизированных систем контроля и управления.

Первоначально основным потребителем авиационной электроники были военные. Боевые самолеты превратились в летающие платформы для датчиков и электронных комплексов. Сейчас авионика составляет большую часть затрат при производстве ЛА . К примеру, для истребителей F-15Е и F-14, доля затрат на авионику составляет 80 % от общей стоимости самолета. В настоящее время электронные системы широко применяются и в гражданской авиации, например, системы управления полетом (FCS) и пилотажно-навигационные комплексы (ПНК) .

Состав авионики

Системы, обеспечивающие управление самолетом

  • Системы связи
  • Системы навигации
  • Системы индикации
  • Системы управления полетом (FCS)
  • Системы предупреждения столкновений
  • Системы метеонаблюдения
  • Системы управления самолетом

Системы, обеспечивающие управление системами вооружения

  • Радары
  • Сонары
  • Электронно-оптические системы
  • Системы обнаружения целей
  • Системы управления вооружением

Интерфейсы

Стандарты коммуникации

  • ARINC 429
  • ARINC 664
  • ARINC 629
  • ARINC 708
  • ARINC 717
  • MIL-STD-1553