Esc регуляторы. Всё, что нужно знать об устройстве ESC Motor

Данные регули брал с КИТом коптера на али (с целью поиграться и попробовать -что же такое коптер), один сгорел до первого полета, и еще 4 в процессе учебных полетов. Вот появилось время и решил попробовать восстановить (зима, делать все-равно нечего).

Снял термоусадку, аккуратно поддел радиатор и увидел следующую картину:


Вверху, отмеченные стрелками-5ти вольтовые стабилизаторы 78M05, с них и начал проверку.



Проверил один и второй соответственно. На всех пяти сгоревших регулях стабилизаторы оказались исправны. Ниже стабилизаторов стоят МОСФЕТ-транзисторы-вот такие:


По два на каждую фазу(вычислил методом научного тыка):


Как работают МОСФЕТы разбираться было лень, поэтому для поиска сгоревших прибег к вышеописанному научному методу, взял тестер и попробовал померять сопротивление между ножками. Сразу повезло, на рабочих мосфетах показания были такие, нижние пимерно 10кОм


Верхние мосфеты около 70кОм


Неисправные же мосфеты показали КЗ и 3кОма



Выпаивал мосфеты паяльником, но лучше конечно феном. У меня таких же на замену не было-попросил товарища, он мне навыпаивал со старых материнок вот такие:


Они не на 30 ампер, а на 50, но подошли.
У меня на всех регулях мосфеты вылетали парами(одна фаза), на одном вылетели все три фазы.

В общем из пяти регулей получилось восстановить четыре. Проверку работоспособности проводил с помощью тестера для сервопривода:


Потом намазал термопастой, поставил радиатор и одел в термоусадку:


Ну вот, собственно, и все.

Если вы хотя бы раз в процессе использования квадрокоптера задавались вопросам о предназначении той или иной детали — о ESC Motor, например, — то наша статья как раз для вас.

ESC Motor, он же Electric Speed Controller — это контроллер скорости, устанавливаемый на бесколлекторных моторах. Основная задача этой детали — передача энергии от аккумулятора к трехфазному бесколлекторному мотору и преобразование в энергию постоянного тока. Еще одна задача electric speed controller — ограничение тока, который проходит через фазы при коммутации.

Для того, чтобы разобраться с работой контроллера ESC подробнее, стоит сначала подробнее узнать об устройстве мотора, чем мы и займемся в статье ниже.




Как работает бесколлекторный мотор квадрокоптера

Бесколлекторный мотор в своей конструкции имеет три фазы (или обмотки). Условно их называют латинскими буквами А, В и С. Все проводники соединяются в фазы с выводами на конце. На картинке ниже вы можете увидеть два способа соединения:

Процессы, происходящие внутри бесколлекторного двигателя в процессе работы, схожи с реакцией рамки с током под воздействием магнитного поля — той самой, из школьных физических опытов. Рамка при помещении в магнитное поле начинала вращаться, притом совершала это движение не постоянно, а до определенного момента. Для постоянного вращения был необходим переключатель направления тока.

По аналогии с физическим опытом: в бесколлекторном моторе рама — это обмотка (или фазы), а переключатель — электроника, которая в определенные моменты подает постоянное напряжение к нужным фазам стартера.

Для того, чтобы работа двигателя была непрерывной, электроника должна уметь распознавать положение ротора. Делает это она при помощи датчиков — оптических, магнитных, дискретных и так далее. Последние, к слову, используются в большинстве современных моделей.

В бесколлекторном двигателе, имеющем три фазы, установлены три датчика соответственно. Именно благодаря им управляющая электроника всегда имеет точные сведения о положении ротора, и в какой момент и к каким фазам требуется подать напряжение.

Но также среди бесколлекторных двигателей встречаются и такие виды, в устройстве которых датчики не предусмотрены. В таком случае положение ротора электроника определяет, проводя измерение напряжения на обмотке, которая в момент проверки находится не в работе.


Когда датчики не ставят?

Бесколлекторные моторы, имеющие в своей конструкции датчики, о которых речь шла выше, считаются наиболее современными, функциональными и технически оснащенными, но вместе с тем и самыми простыми. Всё это делает их наиболее предпочтительными для установки в радиомодели. Однако в мире нет ничего идеального, поэтому такой подвид двигателя также имеет определенные минусы.

Во-первых, для корректной работы от каждого датчика в двигателе необходимо проложить провод для обеспечения питания. Во-вторых, если хотя бы один из датчиков выйдет из строя, то весь двигатель не сможет работать. В-третьих, замена датчика требует полной разборки всего двигателя, а значит относится к дорогостоящим услугам в сервисном центре.

Двигатели с датчиками преимущественно ставятся в те квадрокоптеры, запуск которых связан с большими нагрузками на вал двигателя.

Если же нагрузки на вал не предусмотрены, то можно использовать и двигатель без датчиков. Такой подвид также используется и в моделях, в которых разместить двигатель с датчиками не позволяет конструкция.

Однако, при установке двигателей такого рода стоит учитывать, что в момент запуска могут происходить колебания или вращения оси двигателя в разные стороны.

Какую характеристику Вы бы хотели улучшить в квадрокоптерах?

Обязательный электронный узел

Возвращаемся к electric speed controller. Нужен этот механизм для регулятора скорости вращения электрического магнитного поля и одновременно с этим — для подачи напряжения на те фазы, на которые необходимо.

Конструкция ESC — микроконтроллер, в который встроена программа и силовые ключи MOSFET.

Характеризуется ESC по максимальному показателю подаваемого от батареи к мотору тока.

Из-за этого нередко начинающие радиолюбители-конструкторы отдают предпочтение регуляторам с высокими показателями запаса тока — это не всегда верно. Так, зачастую можно подобрать контроллер и с меньшим запасом, однако работать он будет лучше. К тому же плюсом будет и меньшая стоимость, и меньший вес.


Но вот чем отличаются контроллеры, так это качеством — нередки, к сожалению, случаи, когда производители экономят даже на термопасте. Из-за халатного отношения к производству регуляторы быстро сгорают. Именно по этой причине, если вы выбираете между двумя ESC с идентичными характеристиками, но различной ценой — отдайте предпочтение более дорогому.

Существует два вида регуляторов скорости: BEC и UBEC. BEC — Battery Eliminator Circuit — регулятор, имеющий в своей конструкции встроенный стабилизатор напряжения. Средний показатель мощности такой модели — 5В, именно ей и обеспечивается питание приемника и многой другой аппаратуры квадрокоптера.

UBEC — Universal Battery Eliminator Circuit — съемный стабилизатор напряжения. Некоторые радиомоделисты в конструировании квадрокоптеров отдают предпочтение именно Universal Battery Eliminator Circuit, так как считают, что этот вариант — более надежный, так как не зависит от температуры регулятора.

UBEC’и также делятся на два типа: импульсные и ионные. В целом они практически идентичны, но первые особенно хороши высоким показателем коэффициента полезной деятельности (который, к слову, растет вместе с ценой на изделие) и меньшим перегревом. Однако в случае с таким видом стабилизатора крайне важно не запараллеливать питание. В работе с ионными стабилизаторами такая установка хоть и не рекомендуется, но всё же допускается.

Микроконтроллер, установленный во всех регуляторах, имеет несколько настраиваемых параметров — тормоз, напряжение, время запуска и его жесткость и так далее.


Калибровка регулятора

Несмотря на то, что калибровка регуляторов зависит от конкретной модели квадрокоптера, на котором этот контроллер используется, есть один метод, общий для всех – настройка и калибровка сразу всех регуляторов.

Стоит отметить, что если у вас квадрокоптер от компании DJI, то вам калибровка не потребуется.

Важное замечание – перед тем, как начинать калибровку контроллеров, откалибруйте радио и подключите регуляторы к моторам.

Перед началом работ всегда убеждайтесь в их безопасности – снимите пропеллеры и отключите квадрокоптер от сети или USB.

Дальнейшие работы будут проходить в несколько этапов.

На первом этапе включите пульт дистанционного управления и выведите стик, отвечающий за подачу мощности, в максимальное положение. Если после подключения литий-полимерного аккумулятора огни на полётной аппаратуре начали циклически загораться красным, синим и желтым, значит, вы всё сделали правильно и APM готов к процедуре калибровки.

На втором этапе, не трогая стик мощности, отключите и снова подключите аккумулятор. Благодаря этой процедуре включится режим калибровки для автопилота. Подтверждением этому будет поочередное мигание красных и синих светодиодных огней, словно на автомобиле полиции.

Только после того, как прозвучит сигнал ровно столько раз, сколько банок имеет ваш аккумулятор (например, для 3S должно быть 3 сигнала), вы сможете убрать стик мощности в минимальное положение.

Если после этого вы услышите однократный, но продолжительный сигнал – значит, процесс калибровки окончен.

В качестве проверки немного поддайте моторам газу – если они начали вращаться, то всё сделано верно.

На третьем этапе совершается выход из режима калибровки регуляторов скорости – для этого стик мощности устанавливается в минимальное положение, а аккумулятор отключается.

Более подробную инструкцию о калибровке контроллеров вы можете посмотреть на видео ниже.

Опубліковано 11.04.2014

Схема регулятора

Схема условно разделена на две части: левая – микроконтроллер с логикой, правая – силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.

Контроллер – ATMEGA168 . Гурманы могут сказать, что хватило бы и ATMEGA88 , а AT90PWM3 – это было бы “вааще по феншую”. Первый регулятор я как раз делал “по феншую”. Если у Вас есть возможность применять AT90PWM3 – это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168 .

Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными “калибрами” бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.

Питание

Питание схемы раздельное. Поскольку драйверы ключей требуют питание от 10В до 20В, используется питание 12В. Питание микроконтроллера осуществляется через DC-DC преобразователь, собранный на микросхеме . Можете применять линейный стабилизатор с выходным напряжением 5В. Предполагается, что напряжение VD может быть от 12В и выше и ограничивается возможностями драйвера ключей и самими ключами.

ШИМ и сигналы для ключей

На выходе OC0B(PD5) микроконтроллера U1 генерируется ШИМ сигнал. Он поступает на переключатели JP2 , JP3 . Этими переключателями можно выбрать вариант подачи ШИМ на ключи (на верхние, нижние или на все ключи). На схеме переключатель JP2 установлен в положение для подачи ШИМ сигнала на верхние ключи. Переключатель JP3 на схеме установлен в положение для отключения подачи ШИМ сигнала на нижние ключи. Не трудно догадаться, что если отключить ШИМ на верхних и нижних ключах, мы получим на выходе перманентный “полный вперед”, что может разорвать двигатель или регулятор в хлам. Поэтому, не забываем включать голову, переключая их. Если Вам не потребуется такие эксперименты – и Вы знаете, на какие ключи Вы будите подавать ШИМ, а на какие нет, просто не делайте переключателей. После переключателей ШИМ сигнал поступает на входы элементы логики “&” (U2 , U3 ). На эту же логику поступают 6 сигналов с выводов микроконтроллера PB0..PB5 , которые являются управляющими сигналами для 6 ключей. Таким образом, логические элементы (U2 , U3 ) накладывают ШИМ сигнал на управляющие сигналы. Если Вы уверены, что будете подавать ШИМ, скажем, только на нижние ключи, тогда ненужные элементы (U2 ) можно исключить из схемы, а соответствующие сигналы с микроконтроллера подавать на драйверы ключей. Т.е. на драйверы верхних ключей сигналы пойдут напрямую с микроконтроллера, а на нижние – через логические элементы.

Обратная связь (контроль напряжения фаз двигателя)

Напряжение фаз двигателя W ,V ,U через резистивные делители W – (R17,R25) , V – (R18, R24) , U – (R19, R23) поступают на входа контроллера ADC0(PC0) , ADC1(PC1) , ADC2(PC2) . Эти выводы используются как входы компараторов. (В примере описанном в AVR444.pdf от компании Atmel применяют не компараторы, а измерение напряжения с помощью ADC (АЦП). Я отказался от этого метода, поскольку время преобразования ADC не позволяло управлять скоростными двигателями). Резистивные делители выбираются таким образом, чтобы напряжение, подаваемое на вход микроконтроллера, не превышало допустимое. В данном случае, резисторами 10К и 5К делится на 3. Т.е. При питании двигателя 12В. на микроконтроллер будет подаваться 12В*5К/(10К+5К) = 4В . Опорное напряжение для компаратора (вход AIN1 ) подается от половинного напряжения питания двигателя через делитель (R5 , R6 , R7 , R8 ). Обратите внимание, резисторы (R5 , R6 ) по номиналу такие же, как и (R17,R25 ), (R18, R24 ),(R19, R23 ). Далее напряжение уменьшается вдвое делителем R7, R8 , после чего поступает на ногу AIN1 внутреннего компаратора микроконтроллера. Переключатель JP1 позволяет переключить опорное напряжение на напряжение “средней точки” формируемое резисторами (R20, R21, R22 ). Это делалось для экспериментов и себя не оправдало. Если нет в необходимости, JP1, R20, R21, R22 можно исключить из схемы.

Датчики Холла

Поскольку регулятор универсальный, он должен принимать сигналы от датчиков Холла в том случае, если используется двигатель с датчиками. Предполагается, что датчики Холла дискретные, тип SS41 . Допускается применение и других типов датчиков с дискретным выходом. Сигналы от трех датчиков поступают через резисторы R11, R12, R13 на переключатели JP4, JP5, JP6 . Резисторы R16, R15, R14 выступают в качестве подтягивающих резисторов. C7, С8, С9 – фильтрующие конденсаторы. Переключателями JP4, JP5, JP6 выбирается тип обратной связи с двигателем. Кроме изменения положения переключателей в программных настройках регулятора следует указать соответствующий тип двигателя (Sensorless или Sensored ).

Измерения аналоговых сигналов

На вход ADC5(PC5) через делитель R5, R6 подается напряжения питания двигателя. Это напряжение контролируется микроконтроллером.

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA . Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования – пожалуйста.

Задающие сигналы

Сигнал, задающий обороты двигателя, с потенциометра RV1 поступает на вход ADC4(PC4) . Обратите внимание на резистор R9 – он шунтирует сигнал в случае обрыва провода к потенциометру.

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

UART интерфейс

Сигналы TX, RX используются для настройки регулятора и выдачи информации о состоянии регулятора – обороты двигателя, ток, напряжение питания и т.п. Для настройки регулятора его можно подключить к USB порту компьютера, используя . Настройка выполняется через любую программу терминала. Например: Hyperterminal или Putty .

Прочее

Также имеются контакты реверса – вывод микроконтроллера PD3 . Если замкнуть эти контакты перед стартом двигателя, двигатель будет вращаться в обратном направлении.

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4 .

Силовая часть

Драйвера ключей использовались IR2101 . У этого драйвера одно преимущество – низкая цена. Для слаботочных систем подойдет, для мощных ключей IR2101 будет слабоват. Один драйвер управляет двумя “N” канальными MOSFET транзисторами (верхним и нижним). Нам понадобиться три таких микросхемы.

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540 , в реальности использовались K3069 . K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость – тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD – может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем “” батареи, затем подаем “+ ” на контакт Antispark . Ток течет через резистор и плавно заряжает конденсатор С19 . Через несколько секунд, подключаем контакт батареи к VD . При питании 12В можно Antispark не делать.

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Работа регулятора

Включение

Напряжение питания регулятора и двигателя раздельное, поэтому может возникнуть вопрос: в какой последовательности подавать напряжение. Я рекомендую подавать напряжение на схему регулятора. А затем подключать напряжение питания двигателя. Хотя при другой последовательности проблем не возникало. Соответственно, при одновременной подаче напряжения также проблем не возникало.

После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.

Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.

Запуск

Запуск бездатчикового двигателя выполняется с установленным в настройках уровнем стартового напряжения. В момент старта положение ручки газа роли значения не имеет. При неудачной попытке старта попытка запуска повторяется, пока двигатель не начнет нормально вращаться. Если двигатель не может запуститься в течение 2-3 секунд попытки следует прекратить, убрать газ и перейти к настройке регулятора.

При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.

Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.

Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:

E:минимальное напряжение батареи: максимальное напряжение батареи: максимальный ток: обороты двигателя (об/мин) A:текущее напряжение батареи: текущий ток: текущие обороты двигателя (об/мин)

Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.

Настройка регулятора

Для настройки регулятора его следует подключить к компьютеру с помощью . Скорость передачи по порту 9600.

Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа “> “. После чего можно вводить команды.

Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):

h – вывод списка команд;
? – вывод настроек;
c – калибровка задающего сигнала;
d – сброс настроек к заводским настройкам.

команда “? ” выводит в терминал список всех доступных настроек и их значение. Например:

Motor.type=0 motor.magnets=12 motor.angle=7 motor.start.type=0 motor.start.time=10 pwm=32 pwm.start=15 pwm.min=10 voltage.limit=128 voltage.cutoff=120 current.limit=200 current.cutoff=250 system.sound=1 system.input=0 system.damper=10 system.deadtime=1

Изменить нужную настройку можно командой следующего формата:

<настройка>=<значение>

Например:

pwm.start=15

Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой “? “.

Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.

Назначение настроек:

Список настроек, их описание:

Параметр Описание Значение
motor.type Тип мотора 0-Sensorless; 1-Sensored
motor.magnets Кол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя. 0..255, шт.
motor.angle Угол опережения фазы. Используется только для Sensorless двигателей. 0..30, градусов
motor.start.type Тип старта. Используется только для Sensorless двигателей. 0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный;
motor.start.time Время старта. 0..255, мс
pwm Частота PWM 16, 32, КГц
pwm.start Значение PWM (%) для старта двигателя. 0..50 %
pwm.min Значение минимального значения PWM (%), при котором двигатель вращается. 0..30 %
voltage.limit Напряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255*
voltage.cutoff Напряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255*
current.limit Ток, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255**
current.cutoff Ток, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255**
system.sound Включить/выключить звуковой сигнал, издаваемый двигателем 0-выключен; 1-включен;
system.input Задающий сигнал 0-потенциометр; 1-RC сигнал;
system.damper Демпфирование входного сигнала 0..255, условные единицы
system.deadtime Значение Dead Time для ключей в микросекундах 0..2, мкс

* – числовое значение 8-ми битного аналого цифрового преобразователя.
Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5
Где: U – напряжение в Вольтах; R5, R6 – сопротивление резисторов делителя в Омах.

Регуляторы оборотов — в англоязычном сообществе называются — Electric Speed Controller (электронный контроллер скорости) или сокращенно — ESC. Основная задача ESC – передача энергии от аккумулятора к бесколлекторному мотору. Потребность в их применении возникла вследствие некоторых особенностей БК — мотора. Вкратце говоря, аккумулятор отдает постоянный ток, а бесколлекторный мотор принимает трехфазный переменный ток.

Принцип работы

Связь с остальными компонентами мультикоптера.

На вход ESC подается напряжение с аккумулятора и сигналы от полетного контроллера, а на выход регулятор отдает управляющее напряжение для привода. Соответственно регулятор должен обеспечивать:

  1. Совместимость с полетным контроллером.
  2. Максимальный ток для мотора (рассчитывается из спецификаций мотора и пропеллера) плюс 20 – 30%.
  3. Потребление тока меньше, чем ток, отдаваемый аккумулятором поделенный на количество ESC.

*Простейшая схема подключения.

Какие регуляторы бывают?

BEC и UBEC

Дополнительно к основной функции, регуляторы оборотов могут так же передавать питание к другим узлам дрона: полетному контроллеру, сервоприводам и так далее. Это достигается внедрением в регулятор блока исключения батареи — Battery Eliminator Circuit (далее как — BEC).

Использование BEC значительно упрощает конструкцию дрона, однако такая схема обладает рядом минусов. Блок исключения батареи может перегреваться при больших перепадах напряжения и больших нагрузках. К тому же регуляторы оборотов с BEC, как правило, стоят дороже, чем регуляторы без блока.

Согласитесь, логичнее и дешевле было бы сделать отдельно ESC и отдельно один BEC. Такое решение есть и называется оно универсальный блок исключения батареи (Universal Battery Eliminator Circuit, далее как — UBEC).

Преимущества UBEC

UBEC — подключается напрямую к аккумулятору и питает нужный узел дрона. Преимущества такого подхода весьма существенны:

  1. Регуляторы оборотов будут меньше перегреваться, поскольку из них будет исключен BEC
  2. UBEC обладают большим коэффициентом полезного действия
  3. Следовательно из предыдущих двух пунктов UBEC способен отдавать больший ток с меньшим риском
  4. Отсутствие переплаты за несколько лишних BEC, располагающихся в ESС. Для некоторых полетных контроллеров крайне не рекомендуется подключать больше одного ESC BEC
  5. Меньший вес регуляторов

Виды BEC и их преимущества

BEC бывают двух видов: линейные (LBEC) и импульсные (SBEC).

  1. Линейный преобразует энергию в тепло, а при перегреве отключается. Что может приводить к неприятным результатам: в лучшем случае коптер не сможет взлететь, а в худшем — неконтролируемое падение. В связи с чем стал применяться в сборке с сервоприводами, которые в свою очередь не потребляют много тока, не позволяя блоку перегреваться.
  2. Импульсный регулирует напряжение быстрым включением и выключением питания, такой подход исключил перегрев, повысил выходную мощность, и позволил достигать КПД 90%, а также импульсные BEC выигрывают у линейных в весе. Возникающие в цепи помехи, которые отрицательно сказываются на работе радио аппаратуры, исключаются добавлением LC — фильтра.

Учитывая то, что многие производители устанавливают на свои UBECLC фильтры (а, если фильтра все-таки нет, то его можно дешево купить и легко установить), профессионалы используют в своих коптерах именно регуляторы SBEC.

Программное обеспечение ESC

Поскольку регулятор оборотов выполняет некоторые преобразования с высокой частотой и может быть настроен на различные режимы работы для него пишут отдельный софт, называемый прошивкой. Это позволяет исправлять прошлые ошибки в алгоритмах управления, создавать более совершенные прошивки (и тем самым, например, уменьшать расходы аккумулятора на среднем газу) и производить гибкие настройки. В коптерах известных компаний типа DJI смена ПО регулятора происходит автоматически при помощи полетного контроллера.

Внимание! Перезапись ПО для регуляторов скорости может повлечь за собой поломки дрона различного характера, а так же снятие с гарантийного обслуживания! Помните, что вы делаете это на свой страх и риск!

Как сменить ПО?

Сменить программное обеспечение регулятора можно несколькими способами:

  1. Используя специальную плату управления
  2. Используя полетный контроллер
  3. Используя ASP программатор

Третий вариант проще и в настоящее время активно внедряется в новые модели.

Выбор регулятора оборотов

Исходя из всего вышеперечисленного, можно выделить особые критерии выбора регулятора оборотов для дрона:

  1. Совместимость с полетным контроллером. Полетный контроллер должен поддерживать BEC и прошивку ESC.
  2. Совместимость со спецификациями мотора и аккумулятора.
  3. Наличие или отсутствие BEС и его тип (LBEC или SBEC).
  4. Теплоотвод и герметичность.