Автоматический регулятор оборотов электродвигателя охлаждения автомобиля. Автоматический регулятор мощности (скорости) вентилятора охлаждения (АРМ)

В данной схеме управление вентилятором или кулером системы охлаждения происходит по сигналу термистора в течении заданного периода времени. Схема простая, собрана всего на трех транзисторах.

Эта система управления может быть использована в самых разных областях жизни, где необходимо охлаждение посредством вентилятора, например, охлаждения материнской платы ПК, в усилителях звука, в мощных блоках питания и в иных устройствах, которые в ходе своей работы могут перегреваться. Система представляет собой сочетание двух устройств: таймера и термореле.

Описание работы схемы управления вентилятором

Когда температура низкая, сопротивление термистора высокое и, следовательно, первый транзистор закрыт, потому что на его базе напряжение ниже 0,6 вольт. В это время конденсатор на 100 мкФ разряжен. Второй PNP-транзистор так же закрыт, поскольку напряжение на базе равно напряжению на его эмиттере. И третий транзистор так же заперт.

При повышении температуры, сопротивление термистора уменьшается. Таким образом, напряжение на базе первого транзистора увеличивается. Когда это напряжение превысит 0,6 В, первый транзистор начинает пропускать ток заряжая конденсатор 100 мкФ и подает отрицательный потенциал на базу второго транзистора, который открывается и включает третий транзистор, который в свою очередь активирует реле.

После того, как вентилятор включается, температура уменьшается, но конденсатор 100 мкФ разряжается постепенно, сохраняя работу вентилятора в течение некоторого времени после того, как температура приходит в норму.

Подстроичный резистор (показан на схеме как 10 ком) должен иметь значение сопротивления около 10% от сопротивления термистора при 25 градусах. Термистор применен марки EPCOS NTC B57164K104J на 100 кОм. Таким образом, сопротивление подстрочного резистора (10%) получается 10 кОм. Если вы не можете найти эту модель можно использовать другой. Например, при использовании термистора 470 кОм сопротивление подстроичного составит 47 кОм.

Схема подключения вентилятора с питанием от 12 вольт.

Схема подключения вентилятора с питанием от 220 вольт

В печатной плате можно увидеть два подстроичных резистора. Первый на 10 кОм для регулирования порога срабатывания вентилятора, второй на 1 мОм позволяет регулировать время работы после нормализации температуры. Если вам нужен больший интервал времени, то конденсатор на 100 мкФ можно увеличить до 470 мкФ. Диод 1N4005 используется для защиты транзистора от индуктивных выбросов в реле.

Данная схема работает следующим образом: Чем выше температура двигателя-тем быстрее вращается вентилятор охлаждения. И наоборот, чем ниже температура-тем медленнее вращается вентилятор,таким образом пока не остановится. Так же данный ШИМ регулятор снижает на грузку на бортовую сеть автомобиля, и избавляет от реле.

Схема собрана на Мосфетах и так же микросхеме ne555

Схема ШИМ ругулятора:


Для уменьшения нагрева нужно использовать несколько мосфетов повторяя цепочку R3-VT1 в параллель, количество транзисторов зависит от мощности вентилятора 200Вт - два транзистора, 300Вт - три транзистора, при больших мощностях возможно придется усиливать выходной какскад 555 таймера:

Важный момент: для равномерного распределения тока нагрузки по мосфетам используем провода сечения 1 - 1,5 кв.мм одинаковой длинны соединяя силовые выводы мосфетов с общими точками схемы.
Так как при работе вентилятора в цепи (акумулятор-вентилятор-регулятор-корпус"земля") течет значительный ток (30А) используем в этой цепи провода сечением не менее 6 кв.мм, а для обеспечения безопасности ставим в эту цепь 40А предохранитель.


Собираем все в корпусе от комутатора зажигания 402 двигателя и размещаем на левом крыле моторного отсека(благо крепёж для монтажа там есть штатно).

Настройка:

Прогреваем двигатель до 85 градусов и вращением движка резистора R7 добиваемся включения вентилятора на половину его мощьности. Алгоритм работы устройства такой, что при повышении температуры двигателя обороты вентилятора повышаются, при понижении температуры обороты вентилятора уменьшаются. В дальнейшем нужно произвести подстройку так чтобы при 80-82 градусах вентилятор не включался.

Скачать плату в LAY

P.S. На практике использования,схема показала что работа устройства далека от совершенства и его эффективность сильно зависит от состояния радиатора (если теплоотдача радиатора "как у нового" то это устройство вполне способно "сбивать температуру" и штатная система включения вентилятора будет срабатывать крайне редко даже в 30 градусную жару, ну а если радиатор "подустал" то кроме плавного разгона вентилятора эта схема ничего более не даст), поэтому рекомендую использовать эту "поделку" только в параллель штатной системе включения вентилятора.
05.2015 Глюк
За время эксплуатации окислились контакты "минусового" провода подключения к бортовой сети - уши корпуса коммутатора, ключи замерли в открытом состоянии и конечно вентилятор закрутился на макс.оборотах "на постоянку". Чистка контактов и установление надежной "массы" вернуло устройство к нормальным режимам работы, но ненадолго. Причиной неисправности оказался один из мосфетов, виновника определил по цвету перегрева его сток-исток контактов.

На параметры работы двигателя, среди прочего, существенно влияет оптимальный температурный режим охлаждающей жидкости. Повышенная температура охлаждающей жидкости при частичной нагрузке обеспечивает благоприятные условия для работы двигателя, что положительно влияет на расход топлива и токсичность отработавших газов. Благодаря пониженной температуре охлаждающей жидкости при полной нагрузке мощность двигателя увеличивается, вследствие охлаждения всасываемого воздуха и тем самым увеличения его количества, поступающего в двигатель.

Применение системы охлаждения с электронным регулированием температуры позволяет регулировать температуру жидкости при частичной нагрузке двигателя в пределах от 95 до 110°C и при полной нагрузке – от 85 до 95°C.

Система охлаждения двигателя с электронным регулированием оптимизирует температуру охлаждающей жидкости в соответствии с нагрузкой двигателя. Согласно программе оптимизации, заложенной в память блока управления двигателем, посредством действия термостата и вентиляторов достигается требуемая рабочая температура двигателя. Таким образом, температура охлаждающей жидкости приведена в соответствие с нагрузкой двигателя.

Схематично система охлаждения с электронным управлением показана на рисунке.

Рис. Система охлаждения с электронным управлением:
1 – расширительный бачок; 2 – радиатор системы отопления; 3 – клапан отключения радиатора системы отопления; 4 – распределитель охлаждающей жидкости с электронным термостатом; 5 – масляный радиатор коробки передач; 6 – датчик температуры охлаждающей жидкости (на выходе жидкости из двигателя); 7 – датчик температуры охлаждающей жидкости (на выходе жидкости из радиатора); 8 – масляный радиатор; 9 – вентиляторы; 10 – основной радиатор системы охлаждения; 11 – жидкостный насос

Основными отличительными составляющими системы охлаждения с электронным регулированием от обычной является наличие распределителя охлаждающей жидкости с электронным термостатом. В связи с введением электронного регулирования системы охлаждения в блок управления двигателем поступает следующая дополнительная информация:

  • электропитание термостата (выходной сигнал)
  • температура охлаждающей жидкости на выходе из радиатора (входной сигнал)
  • управление вентиляторами радиатора (2 выходных сигнала)
  • положение потенциометра у регулятора системы отопления (входной сигнал)

Распределитель представляет собой устройство для направления потока охлаждающей жидкости в малый или большой круг.

Рис. Принципиальная схема работы распределителя охлаждающей жидкости с электронным термостатом:
1 – поток жидкости от основного радиатора; 2 – зона отстоя охлаждающей жидкости при закрытой клапанной тарелке; 3 – большая клапанная тарелка; 4 – поток жидкости от двигателя; 5 – поток жидкости от системы отопления; 6 – поток жидкости от масляного радиатора; 7 – поток жидкости от жидкостного насоса; 8 – малая клапанная тарелка; 9 – электронный термостат; а – циркуляция жидкости по малому кругу; б – циркуляция жидкости по большому кругу

В термостате в отличие от обычных систем охлаждения установлен дополнительное нагревательное сопротивление 3.

Рис. Электронный термостат:
1 – штифт; 2 – наполнитель; 3 – дополнительное сопротивление

При нагревании охлаждающей жидкости наполнитель 2 разжижается и расширяется, что ведет к подъему штифта 1. Когда к нагревательному сопротивлению не поступает ток, термостат действует как традиционный, однако температура его срабатывания повышена и составляет 110°C (температура охлаждающей жидкости на выходе из двигателя). В наполнитель встроено нагревательное сопротивление 3. Когда на него подается ток, оно нагревает наполнитель 2, который при этом расширяется, в результате чего штифт выдвигается на определенную величину «x» в зависимости от степени нагрева наполнителя. Штифт 1 теперь перемещается не только под действием нагретой охлаждающей жидкости, но и под действием нагревания сопротивления, а степень его нагревания определяет блок управления двигателем в соответствии с заложенной в него программой оптимизации температуры охлаждающей жидкости. В зависимости от характера импульса и времени его подачи изменяется степень нагревания наполнителя.

Распределитель размещен вместо подсоединительных штуцеров у головки блока цилиндров и представляет собой устройство для направления потока охлаждающей жидкости в малый или большой круг.

Малый круг служит для быстрого прогрева двигателя после запуска холодного двигателя. Система оптимизации температуры охлаждающей жидкости при этом не работает. Термостат в распределительной коробке препятствует выходу охлаждающей жидкости из двигателя и открывает кратчайший путь к насосу. Радиатор не включен в круг циркуляции охлаждающей жидкости. Охлаждающая жидкость циркулирует по малому кругу. Положение клапанных тарелок таково, что возможно движение охлаждающей жидкости только к насосу. Охлаждающая жидкость нагревается очень быстро, чему способствует циркуляция ее только по малому кругу.

Теплообменник системы отопления и масляный радиатор включены в малый круг.

Ход охлаждающей жидкости в большой круг открывается или посредством термостата в регуляторе по достижению температуры примерно 110°C, или в соответствии с нагрузкой двигателя по программе оптимизации температуры охлаждающей жидкости, заложенной в блок управления двигателем.

При полной нагрузке двигателя требуется интенсивное охлаждение охлаждающей жидкости. На термостат в распределителе поступает ток, и открывается путь для жидкости из радиатора. Одновременно посредством механической связи малая клапанная тарелка перекрывает путь к насосу в малом круге.

Насос подает охлаждающую жидкость, выходящую из головки блока непосредственно к радиатору. Охлажденная жидкость из радиатора поступает в нижнюю часть блока двигателя и оттуда засасывается насосом.

Возможна также комбинированная циркуляция охлаждающей жидкости. Одна часть жидкости проходит по малому кругу, другая – по большому.

Управление термостатом в оптимизированной системе охлаждения двигателя (движение охлаждающей жидкости по малому или большому кругу) осуществляется в соответствии с трехмерными графиками зависимости оптимальной температуры охлаждающей жидкости от ряда факторов, основными из которых являются нагрузка двигателя, частота вращения коленчатого вала, скорость движения автомобиля и температура всасываемого воздуха. По этим графикам определяется величина номинальной температуры охлаждающей жидкости.

Термостат срабатывает лишь тогда, когда фактическая величина температуры охлаждающей жидкости выходит за пределы поля допуска номинальной величины температуры, что и обеспечивает постоянство нахождения фактической температуры в поле допуска номинальной температуры.

Фактические значения температуры охлаждающей жидкости снимаются с двух различных мест контура системы охлаждения и передаются в блок управления двигателем в виде сигналов по напряжению. Датчики температуры охлаждающей жидкости на выходе из двигателя и на выходе охлаждающей жидкости из двигателя в распределителе работают как датчики с отрицательным температурным коэффициентом. Номинальные величины температуры охлаждающей жидкости заложены в память блока управления двигателем в качестве графических зависимостей.

При эксплуатации двигателя в странах с суровым климатом может применяться дополнительный электроподогрев для повышения температуры охлаждающей жидкости. Дополнительный подогрев состоит из трех свечей накаливания. Они встроены в месте подсоединения магистрали охлаждающей жидкости к головке блока. По сигналу от блока управления реле включает малый или большой подогрев. В зависимости от резерва по току генератора включаются одна, две или три свечи накаливания для подогрева охлаждающей жидкости.

Умное управление вентилятором радиатора:

  • Снижение расхода топлива
  • Увеличение срока службы двигателя
  • Вентилятор работает практически бесшумно

Модификации (виды) «Борея»

Существуют два вида «Борея» - с коммутацией либо минусового либо плюсового провода к вентилятору. Соответственно в «Борее» будет присутствовать либо буква «К»(минусовой) либо буква «А»(плюсовой). Все версии герметичны в отношении платы, версии с проводами также герметичны и в месте впайки проводов.

Остальные модификации связаны с наличием\отсутствием впаянных проводов, толщиной силовых проводов (2.5 или 4 кв.мм.) и мощностью (360 или 520вт), типом разъема к вентилятору(российский или импортный), напряжением батареи 12В или 24В(грузовики).

Корпус «Борея» - алюминиевый размером 45х45мм либо 35х90мм, размер не привязан к какому-то виду Борея и может меняться от партии к партии. Корпус служит теплоотводом и электрически изолирован от платы.

Узнать, какой из проводов к вентилятору коммутирует реле штатной системы автомобиля можно следующим образом. При включенном зажигании, но на не заведенном ДВС и выключенном вентиляторе нужно тестером померять напряжение на любом из выводов вентилятора относительно массы. Если тестер покажет +12В, то вентилятор коммутируется проводом "массы" и Вам нужен «Борей-К» или «Борей-КВ». Если покажет 0Вольт - то "плюсовым" проводом, соответственно Вам нужен «Борей-А» или «Борей-АВ» .

Борей-К

«Борей-К» коммутирует "массу". Мощность модели 360вт.

Борей-А

Это исполнение с разъемом для подсоединения проводов. Разъемы находятся внутри корпуса, чтобы грязь в них не попадала, для ввода проводов используется штуцер. Вся плата залита герметиком, за исключением контактов разъема для подключения проводов.

Провода в комплект не входят. Версия без проводов удобна тем, что силовые провода могут быть сделаны оптимальной длины "по месту". Штуцер предназначен для проводов до 4кв.мм., но на пределе возможны и 6кв.мм.

«Борей-А» коммутирует провод "плюс". Мощность модели 360вт.

Исполнения на 24Вольта не будет.

Эта версия находится в производстве с весны 2018года, имеет существенные улучшения в части электроники, реализуемых функций и программирования.

Борей-КВ

Эта версия находится на текущей странице.

«Борей-КВ» коммутирует "массу". Мощность модели 360вт.

Борей-АВ

Эта версия находится на другой странице.

«Борей-АВ» коммутирует провод "плюс". Мощность модели 360вт.

Герметичное исполнение «Борея», провода 2.5кв.мм. в комплект входят и запаяны непосредственно в плату. Модуль полностью залит компаундом. Версия со впаянными проводами не подразумевает их удлинение или укорочение. Их длина, конечно, может быть изменена, но без скрутки\пайки\переобжима это не получится.

Борей-КВ4

Эта мощная версия находится на текущей странице. Рекомендуется для ДВС более 3л.

«Борей-КВ4» коммутирует "массу". Мощность модели 520вт.

Имеется заказное исполнение на 24Вольта.

Борей-АВ4

Эта мощная версия находится на другой странице. Модель 2019г.

«Борей-АВ4» коммутирует "плюс". Мощность модели 520вт. Рекомендуется для ДВС более 3л.

Герметичное исполнение «Борея», провода 4кв.мм. в комплект входят и запаяны непосредственно в плату. Модуль полностью залит компаундом. Версия со впаянными проводами не подразумевает их удлинение или укорочение. Их длина, конечно, может быть изменена, но без скрутки\пайки\переобжима это не получится.

Назначение блока управления вентилятором (БУ ЭВСО)

Все люксовые автомобили, оснащенные электровентиляторами радиатора системы охлаждения, имеют и модуль плавного управления скоростью вращения этого вентилятора. Это неслучайно, поскольку такое управление дает массу преимуществ в сравнении с классическим релейным управлением. Плавное управление скоростью вращения имеет только один существенный недостаток - высокую цену. Вот именно в плане цены наш блок управления вентилятором дает огромную фору импортным аналогам, ни в чем не уступая им по остальным параметрам. Историю создания «Борея» можно посмотреть .

«Борей» предназначен для изменения скорости вращения электровентилятора радиатора системы охлаждения в зависимости от текущей температуры двигателя автомобиля таким образом, чтобы температура ДВС не уходила выше 1-2градусов от установленной точки включения электровентилятора. C этой задачей «Борей» справляется гораздо лучше, чем штатная релейная система.

Блок управления «Борей» - это система управления вентиляторами , имеющая расширенные функции в сравнении со штатной системой.

  • БУ ЭВСО решит для Вас проблему охлаждения двигателя машины в самых тяжелых условиях. «Борей» гораздо более надежен, чем реле.
  • БУ ЭВСО может управлять вторым электровентилятором или электропомпой для увеличения теплосъема с радиатора системы охлаждения. Естественно, что для работы «Борея» необходим вентилятор(ы), производительность которого(ых) достаточна для самого тяжелого режима охлаждения двигателя автомобиля.
  • БУ ЭВСО работает "впараллель" со штатной системой включения вентилятора, ничем не мешая ей. Эти две системы резервируют друг друга, тем самым повышая общую надежность.
  • БУ ЭВСО обрабатывает и потребности кондиционера автомобиля, включая продув конденсора кондиционера тогда, когда это нужно кондиционеру. Этим ликвидируется необходимость в дополнительном вентиляторе для кондиционера.
  • БУ ЭВСО подключается к штатному датчику автомобиля, при этом нет необходимости в подборе или калибровке этих датчиков. Температура стабилизации при этом задается самим водителем с помощью очень простой операции (все подробности есть ниже по тексту).

Для каких машин предназначен БУ ЭВСО?

Да, собственно, для всех, где есть электровентилятор. От "Оки" и до "Чероки", от 0.5литров объема двигателя и до 5-8л, в том числе серийно устанавливаются на вездеходах АВТОРОС. В мощных машинах разумно просто использовать два электровентилятора с двумя «Бореями» даже там, где справился бы и один. В расчете на литр объема установка «Борея» на "Чероки" гораздо более дешевое мероприятие, чем на "Оку". При замене вентилятора с вискомуфтой на электровентилятор рекомендуется применить "Борей-К" или "Борей-КВ". Для мощных машин предназначена версия «Борей-КВ1-4» с толстыми проводами сечением 4кв.мм. Для коммерческих машин и грузовиков, где бортовое напряжение составляет 24В, выпускается версия «Борей-КВ24»

Преимущества:

  • автоматическая настройка температуры стабилизации без участия водителя;
  • простота перестройки температуры стабилизации;
  • контроль работы вентилятора системы охлаждения с помощью запрограммированных тестов;
  • контроль рабочих параметров системы охлаждения при запуске двигателя;
  • автоматическая защита от перегрузки по току свыше 30 А;
  • автоматическая защита от короткого замыкания по току свыше 50 А;
  • легкое встраивание в штатную систему охлаждения;
  • стабилизация температуры двигателя , а не радиатора;
  • высокая надежность;
  • резервирование (штатная система охлаждения остается в качестве дублирующей).
  • для управления блоком не используются механические кнопки, управление бесконтактное, магнитное.

Преимущества при использовании блока управления вентилятором

  • снизить расход топлива;
  • увеличить срок службы (ресурс) двигателя автомобиля;
  • практически исключить шум от работы вентилятора;
  • уменьшить электрическую нагрузку на бортовую сеть автомобиля.

Принцип работы блока управления вентилятором

Здесь никакого "открытия Америки" нет. Как и нет гигантского эффекта, он составляет в общем 15-30% по отношению к классической системе управления вентилятором.

Когда с помощью реле, включающего электровентилятор в классической системе, двигатель охлаждается на 10градусов, когда достаточно его охладить на 1градус, лишние 9градусов оказываюся действительно "лишней" работой, которую «Борей» зря не выполняет. Эффект здесь, конечно не в 9 раз, но вдвое выигрыш есть. Выше мы уже писали о том, что вентилятор должен обеспечивать охлаждение ДВС в максимально тяжелом режиме (режиме максимальной мощности). Когда вентилятор в пробке охлаждает двигатель, работающий на 10% своей мощности, ему достаточно и 30% скорости вращения, от большей мощности пользы не будет ().

В целом, именно эффективные алгоритмы работы управления вентилятором позволяют достичь небольшой экономии, но что более важно, позволяют более точно стабилизировать температуру двигателя. Водители, установившие «Борей», обычно говорят: "установил и забыл, а в пробках стрелка температуры стоит, как влитая".

Установка

Доступны для поставки четыре комплекта проводов, различающихся типом применяемого разъема вентилятора и полярностью (для «Борей-А» и «Борей-К»). Силовые провода имеют сечение 2.5кв.мм.

Первый тип с российским разъемом хорош тем, что если он не подходит по "пластмассе" к разъему вентилятора, то контакты можно извлечь из пластмассового корпуса и воткнуть по отдельности в разъем вентилятора, учитывая полярность. В автомобилях разных стран применяют разные разъемы, но внутренний тип контакта почти всегда один (размер 6.3мм), в том числе у вентиляторов "Бош" российского производства, а также "Шеви-Нивы" и "Калины".

Второй комплект проводов с разъемом Packard 12015987 (рисунок справа) подходит по "пластмассе" к большинству импортных вентиляторов, в том числе и вентиляторам "Бош" российского производства, а также к вентиляторам "Шеви-Нивы" и "Калины". Однако разобрать такой разъем уже не получится, контакты внутри специализированные и не подойдут к другому типу разъемов.

Особенности «Борея-КВ4»

Это мощная, более новая модель, она выпущена в 2018году, по программе и настройкам совместимая с «Борей-К». Это модель со впаянными проводами сечением 4кв.мм. Монтируется она аналогично «Борею-КВ», а программируется аналогично «Борею-К».

Повышенная мощность потребовала серьезного изменения внутренней платы. Если предыдущие версии использовали автоматизированный монтаж силовых элементов (первое фото ниже), то эта модель требует их ручного монтажа и пайки, что безусловно увеличивает ее себестоимость.




LED-шкала для индикации скорости вращения вентилятора

Светодиодная шкала "Фотон-1" показывает текущую скорость (мощность) вращения вентилятора. Фактически «Фотон-1» - измеритель среднего напряжения на моторе. "Фотон-3" дополнительно имеет шкалу температуры, показывающую отклонения температуры от точки срабатывания вентилятора.

Почему быстрый старт вентилятора охлаждения неприемлем для автомобиля? Тут несколько ответов:

1. На бортовую сеть идет большая нагрузка (это проводка, аккумулятор, генератор);
2. Помимо предыдущего идет и большая физическая нагрузка на крепления вентилятора и его подшипник;
3. Приходится использовать необоснованно большой предохранитель, так как пусковой ток может составлять до 30А.

Теперь определимся с задачами, которые мы поставим перед собой:

1. Главная наша задача – создать, так сказать, соф-старт.
2. Для этого использовать только штатную проводку.
3. Ограничится уже имеющимися кнопками.
4. Изначально автомобиль не обладал реле включения вентилятора, поэтому исправим это.

Как устроено представленное устройство? На самом деле, это ШИМ генератор импульсов, который запускается и начинает генерацию импульсов постоянной частоты на третий выход с изменяющейся по времени шириной следования импульса.

Время ширины задается емкостью конденсатора С3. Эти импульсы следуют до драйвера полевого транзистора, под управлением которого находится мощность нагрузки выхода устройства. Диод, который установлен на выходе, служит для того, чтобы погасить обратные неприемлемые выбросы электродвигателя.

Для диода была использована диодная сборка Шотки с общим катодом. Полевик использован Р-канальный, по причине того, что он должен регулировать положительное напряжение. Если бы использовался N-канальный, то потребовалась бы переработка всей проводки, которая связана с охлаждением двигателя, а в наши задачи это не входит.

В представленном устройстве часть элементов выполнена навесными, а другая – прикреплена на печатную плату.

Рисовка карты производилась в ЛУТе, а травка – хлорным железом.

Сначала нужно достать реле, разобрать его и извлечь все внутренности, оставив только клеммы.



Отрезав все ненужное, приступим к навесному монтажу.

Навесной у нас будет вся правая часть схемы, то есть все, что выходит с 3 ножки NE555. Если паять это все на плате, то размеров платы вообще не хватит.


Можно приступать и к самой плате. У меня самого вышла такая ситуация, что пришлось немного обрезать плату, чтобы транзистор и диоды корректно располагались за пределами платы. В конце статьи плата показана полной, так как ее модификацию под нужные размеры я оставил на потом.


Следующий шаг – впаиваем обрезанную плату в реле.



Напоследок осталось впаять перемычки и прикрепить радиатор.




Вот и все. Устройство уже готово. Теперь его нужно покрыть лаком или попробовать залить канифолью. Собранное устройство не требует никаких настроек и оно подойдет к любому электродвигателю, так как ее максимальный ток составляет 74А. Использованный контролер IRF4905 дешевый, его легко найти в любом магазине электротоваров.

Вот вам вид готового к работе устройства.