Arduino автоматизация освещения датчик движения ir фоторезистор. Фоторезистор и светодиоды на Arduino

Сегодня сделаем скетч и прототип схемы на Arduino с пользованием фоторезистора. Вот фоторезистор, находится здесь, я собралась такой макет, он похож на новогоднюю светодиодную гирлянду из предыдущих статей.

У нас 8 светодиодов, они установлены так, что слева короткая ножка это минус, справа длинная ножка это плюс. Так они все установлены, в схеме использован один резистор на 10 килоом, я его брал из набора Arduino Kit , и используется 8 подключенных к плюсовому контакту светодиода сопротивлений на 220ом, так оно подключено.


Использовано 8 чёрных проводов это минусовые, и зелёные 8 штук – пины управления от двенадцатого до пятого. В процессе отладки крайний черный заменил на зеленый, но об этом позже.

Фоторезистор здесь, рядом с ним резистор на 10килоом, синяя перемычка идёт к минусу, оранжевый подключается одним концом в среднюю точку, между резистором и фоторезистором, другим концом в плату Arduino , в А0 (аналоговый пин).

Красный это 5 Вольт, и вот через этот делитель напряжения будет работать схема, будут загораться светодиоды, в зависимости от уровня освещенности. Я поправлю светодиоды, достаточно шаткая получилось конструкция. К модели ещё вернемся, а сейчас займемся написанием скетча.

Создадим новый проект, и приступим к написанию, объявим константы, несколько штук, пусть будет тип int , это будет количество выводов, поскольку светодиодов в схеме 8 штук. Так будет указано, сколько светодиодов использовали в схеме.

const int NbrLEDs = 8;

Сделаем массив с номерами пинов, задействуем 5 6 7 8 9 10 11 12 цифровые разъёмы, укажем номер пина на котором снимается уровень освещённости, объявим переменную для фоторезистора, значение сенсора и также объявим уровень освещённости, чтобы можно было делать разбивку их по пинам.

const int ledPins = { 5, 6, 7, 8, 9, 10, 11, 12}; const int photocellPin = A0; int sensorValue = 0; int ledLevel = 0;

В подпрограмме setup напишем цикл, в котором чтобы не присваивать каждому значению исходящего через pinMode , пройдём в цикле по всем пинам присвоим им значения в pinmode из массива и каждому пину присвоим значение OUTPUT .

void setup() { for (int led = 0; led < NbrLEDs; led++) { pinMode(ledPins, OUTPUT); } }

В принципе можно было этого не делать, можно было указать pinmode и дальше писать пять, потом 6, и так далее, но это очень долго и это дикий варварский метод. Поэтому в цикле за один проход пройдем все пины.

pinMode(5, OUTPUT); pinMode(6, OUTPUT);

В loop получим значение сенсора, считав через analogRead из пина A0 .

Далее, сделаем разбивку значение сенсор, используя функцию map получаем значение сенсора, и исходя из уровня освещенности, при чувствительности от 300 до максимального значения 1023 , будет распределяться по 8 пинам, которая объявлены выше.

Смотрите так же видео Фоторезистор и светодиоды на Arduino - (видео) , ссылка откроется в новой вкладке.

Далее в цикле пройдем все пины, так добавил скобки, начиная с первого светодиода, если счетчик не больше 8 будем прибавлять, и дальше проверим по условию, что если номер светодиода меньше уровня освещения, подадим на этот светодиод и все предыдущие напряжение через константу HIGH .

Если же нет, запишем в него отсутствие напряжения, и светодиод не будет гореть.

void loop() { sensorValue = analogRead(photocellPin); ledLevel = map(sensorValue, 300, 1023, 0, NbrLEDs); for (int led = 0; led < NbrLEDs; led++) { if (led < ledLevel) { digitalWrite(ledPins, HIGH); } else { digitalWrite(ledPins,LOW); } } }

Выравниваем код через комбинацию клавиш ctrl+T и давайте теперь посмотрим, что получится, запустим на проверку, сохраним скетч.

Так компиляция скетча, теперь его загрузим на Arduino . Вернемся к схеме, на данный момент один светодиод при изменении освещение не горит из-за плохого контакта.


Сейчас исправлю, не будем его трогать, если я выключу освещение, то погаснут все светодиоды. Если же я буду подсвечивать фоторезистор фонариком, плавно добавляя освещения, то будут гореть практически все светодиоды, ну и соответственно убираю, уменьшая уровень освещённости, меняется число горящих светодиодов.


Если же я включу полностью освещение, горят почти все, в чём проблема с этим светодиодом. Достаточно много потратил на него времени, здесь всё правильно собрано, даже минус пробросил заведомо исправным зеленым проводом, но почему-то он капризничает и не горит.


Давайте теперь вернемся к скетчу и посмотрим что не так. Пример был взят с официального источника, на диске к Arduino есть такой же код.

В скетче получается распределение освещенности от 300 до 1023 (максимального значения), попытка изменить начальный порог на 0 - никакого результатов не даёт.

Но если распределяем на 8 частей вот это вот всё значение, то тут пригодится калькулятор, получается, либо сопротивление на 10килоом даёт погрешность какую-то, нужно 1023 разделить на 8, получаем практически 128, если брать правильно, то 1024 разделить на 8, это и есть 128.

Теперь нужно от 1023 вычесть 128, поставить сюда значение 895, тогда по логике вещей должно быть всё нормально. Загрузим и посмотрим, что изменится.

void loop() { sensorValue = analogRead(photocellPin); ledLevel = map(sensorValue, 0, 895, 0, NbrLEDs); for (int led = 0; led < NbrLEDs; led++) { if (led < ledLevel) { digitalWrite(ledPins, HIGH); } else { digitalWrite(ledPins,LOW); } } }

Сейчас горят все светодиоды, попробуем перекрыть освещенность, или давайте отключим…

Стартовое значение всё равно надо вернуть 300, поскольку подается на эти три первых светодиода питания. Давайте изменим в скетче 0 на 300, как было, было это сделано не просто так, перезалью скетч и посмотрим, что изменится на этот раз…

void loop() { sensorValue = analogRead(photocellPin); ledLevel = map(sensorValue, 300, 895, 0, NbrLEDs); for (int led = 0; led < NbrLEDs; led++) { if (led < ledLevel) { digitalWrite(ledPins, HIGH); } else { digitalWrite(ledPins,LOW); } } }

Теперь горит первый светодиод, при минимальном освещении, если включить все, а там у меня 1800 люксов, из двух метров светодиодной ленты, горят все, как и должно.


При выключении фоторезистор ловит остаточное освещение в помещении, горит люстра, не полная тьма, и он срабатывает. Но если подсвечивать фонариком, подавая плавно свет на фоторезистор, схема работает правильно.


Если вырубить свет полностью, посмотрим, что получится в полной темноте. Как видите, при полном отсутствии света, фоторезистор реагирует правильно, светодиоды загораются постепенно, по мере увеличения освещенности. При включенном свете горят все. Такой вот получился скетч, с лайфхаком – подгонка чувствительности фоторезистора, под свои нужды.


  1. Фототорезистор: http://ali.ski/5GDvP7
  2. Диоды и резисторы: http://fas.st/KK7DwjyF
  3. Макетная плата: http://ali.ski/rq8wz8
  4. Arduino uno: http://ali.ski/gC_mOa

В этом уроке мы подключим к Arduino фоторезистор. который будет управлять встроенным светодиодом.

Фоторезистор: Сопротивление фоторезисторов уменьшается под воздействием света и увеличивается в темноте. Фоторезисторы просты в использовании, но достаточно медленно реагируют на изменение уровня освещенности и имеют весьма низку. точность. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при дневном освещении до более чем 10 МОм в темноте.

Сам фоторезистор мы будем подключать к земле через резистор в 10 кОМ и эту же ножку будем подключать к аналоговому пину Ардуино A0, вторую ножку фоторезистора будем подключать к 5 вольтам ардуино. Все это наглядно в приведено в схеме вначале статьи.

После правильного подключения фоторезистора к ардуино, нужно скопировать код приведенный ниже, вставить его в программу Arduino ide и загрузить весь этот программный код в ардуино.

Int PhotosensorPin = A0; //Указываем пин к которому подклюен Фоторезистор unsigned int sensorValue = 0; //Объявляем переменную для хранения значений. void setup() { pinMode(13, OUTPUT); Serial.begin(9600); } void loop() { sensorValue = analogRead(PhotosensorPin); //Считываем значения с фоторезистора if(sensorValue<700) digitalWrite(13, HIGH); //Включаем else digitalWrite(13, LOW); // Выключаем Serial.print(sensorValue, DEC); //Вывод данных с фоторезистора (0-1024) Serial.println(""); delay(500); }

После загрузки программного кода в ардуино, необходимо открыть монитор порта.

Теперь, если свет падает на фоторезистор, и встроенный светодиод выключен, заслоните фоторезистор рукой, и вы увидите, что в определенный момент светодиод включится! Так же можно посмотреть изменения значения с фоторезистора в мониторе порта.

Демонстрацию работы фоторезистора можно посмотреть в видео ниже.

Видео:

Рассмотренный в предыдущей части обзора встроенный АЦП микроконтроллера позволяет легко подключать к плате Arduino различные аналоговые датчики, которые преобразуют измеряемые физические параметры в электрическое напряжение.

Примером простейшего аналогового датчика может служить переменный резистор, подключённый к плате, как показано на рис. 1. Он может быть любого типа, например СП3-33-32 (рис. 2). Номинал резистора на схеме указан ориентировочно и может быть как меньше, так и больше. Однако следует помнить, что чем меньше сопротивление переменного резистора, тем больший ток он потребляет от источника питания микроконтроллера. А при сопротивлении источника сигнала (в данном случае переменного резистора) более 10 кОм АЦП микроконтроллера работает с большими ошибками. Учтите, что сопротивление переменного резистора как источника сигнала зависит от положения его движка. Оно равно нулю в его крайних положениях и максимально (равно четверти номинального сопротивления) в среднем положении.

Рис. 1. Схема подключения переменного резистора к плате

Рис. 2. СП3-33-32

Удобно использовать переменный резистор, когда требуется изменять параметр плавно, а не ступенями (дискретно). В качестве примера рассмотрим работу приведённой в табл. 1 программы, которая изменяет яркость свечения светодиода в зависимости от положения движка переменного резистора. Строка U = U/4 необходима в программе для того, чтобы преобразовать возвращаемое АЦП десятиразрядное двоичное число в восьмиразрядное, принимаемое в качестве второго операнда функцией analogWrite(). В рассматриваемом случае это делается делением исходного числа на четыре, что эквивалентно отбрасыванию двух младших двоичных разрядов.

Таблица 1.

Переменный резистор соответствующей конструкции может служить датчиком угла поворота или линейного перемещения. Аналогично ему можно подключать многие радиоэлементы: фоторезисторы, терморезисторы, фотодиоды, фототранзисторы. Одним словом, приборы, электрическое сопротивление которых зависит от тех или иных факторов окружающей среды.

На рис. 3 изображена схема подключения к Arduino фоторезистора. При изменении освещённости меняется его электрическое сопротивление и соответственно напряжение на аналоговом входе платы Arduino. Указанный на схеме фоторезистор ФСК-1 можно заменить любым другим, например СФ2-1.

Рис. 3. Схема подключения к Arduino фоторезистора

В табл. 2 приведена программа, превращающая плату Arduino с подключённым к ней фоторезистором в простейший измеритель освещённости. Работая, она периодически измеряет падение напряжения на резисторе, включённом последовательно с фоторезистором, и передаёт результат в условных единицах через последовательный порт на компьютер. На экране отладочного терминала Arduino они будут отображены, как показано на рис. 4. Как видим, в определённый момент измеренное напряжение резко уменьшилось. Это произошло, когда ярко освещённый фотодиод был затенён непрозрачным экраном.

Таблица 2.

Рис. 4. Изображение на экране отладочного терминала Arduino

Чтобы получать значения освещённости в люксах (стандартных единицах системы СИ), нужно умножать полученные результаты на поправочный коэффициент, но подобрать его придётся экспериментально, причём индивидуально для каждого фоторезистора. Для этого потребуется образцовый люксметр.

Фототранзистор или фотодиод (рис. 5) подключают к Arduino подобным образом. Используя несколько светочувствительных приборов, можно сконструировать простейшую систему зрения для робота . Можно и на новом техническом уровне реализовать многие известные широкому кругу радиолюбителей классические конструкции - кибернетическую модель ночной бабочки или модель танка, который движется на свет .

Рис. 5. Схема подключения фотодиода к Arduino

Аналогично фоторезистору подключают к Arduino терморезистор (рис. 6), который меняет своё электрическое сопротивление в зависимости от температуры. Вместо указанного на схеме терморезистора ММТ-4, основное достоинство которого - герметичный корпус, можно использовать практически любой другой, например, ММТ-1 или импортный.

Рис. 6. Схема подключения терморезистора к Arduino

После соответствующей калибровки подобный прибор можно применять для измерения температуры во всевозможных домашних метеостанциях, термостатах и тому подобных конструкциях .

Известно, что почти все светодиоды могут служить не только источниками света, но и его приёмниками - фотодиодами. Дело в том, что кристалл светодиода находится в прозрачном корпусе и поэтому его p-n переход доступен для света от внешних источников. К тому же корпус светодиода, как правило, имеет форму линзы, которая фокусирует внешнее излучение на этом переходе. Под его влиянием изменяется, например, обратное сопротивление p-n перехода.

Подключив светодиод к плате Arduino по схеме, изображённой на рис. 7, можно использовать один и тот же светодиод и по прямому назначению, и как фотодатчик . Программа, иллюстрирующая такой режим, приведена в табл. 3. Её идея состоит в том, что сначала на p-n переход светодиода подают обратное напряжение, заряжая его ёмкость. Затем катод светодиода изолируют, конфигурируя как вход вывод Arduino, к которому он подключён. После этого программа измеряет зависящую от внешней освещённости продолжительность разрядки ёмкости p-n перехода светодиода его собственным обратным током до уровня логического нуля.

Рис. 7. Схема подключения светодиода к плате Arduino

Таблица 3

В приведённой программе переменная t описана как unsigned int - целое число без знака. Переменная такого типа, в отличие от обычной int, принимающей значения от -32768 до +32767, не использует свой старший двоичный разряд для хранения знака и может принимать значения от 0 до 65535.

Подсчёт времени разрядки программа выполняет в цикле while(digitalRead (K)!=0)t++. Этот цикл выполняется, всякий раз увеличивая значение t на единицу, пока истинно заключённое в скобки условие, т. е. пока напряжение на катоде светодиода не опустилось до низкого логического уровня.

Иногда требуется, чтобы робот не просто получал информацию об освещённости поверхности, по которой движется, но и мог определить её цвет. Реализуют датчик цвета подстилающей поверхности, освещая её поочерёдно светодиодами разного цвета свечения и сравнивая с помощью фотодиода уровни отражённых от неё при разном освещении сигналов . Схема соединения элементов датчика цвета с платой Arduino показана на рис. 8, а обслуживающая его программа - в табл. 4.

Рис. 8. Схема соединения элементов датчика цвета с платой Arduino

Таблица 4

Процедура измерения принимаемых фотодиодом при разном освещении поверхности сигналов повторяется многократно, а получаемые результаты накапливаются, чтобы исключить случайные ошибки. Затем программа выбирает наибольшее из накопленных значений. Это позволяет грубо судить о цвете поверхности. Для более точного определения цвета необходимо усложнить обработку результатов, учитывая не только наибольший из них, но и его соотношение с меньшими. Необходим также учёт реальной яркости светодиодов разного цвета свечения, а также спектральной характеристики применённого фотодиода.

Пример конструкции датчика цвета из четырёх светодиодов и фотодиода показан на рис. 9. Оптические оси светодиодов и фотодиода должны сходиться в одной точке на исследуемой поверхности, а сами приборы расположены максимально близко к ней, чтобы свести к минимуму влияние посторонней засветки.

Рис. 9. Пример конструкции датчика цвета из четырёх светодиодов и фотодиода

Собранный датчик требует тщательной индивидуальной калибровки на поверхностях разного цвета. Она сводится к подборке коэффициентов, на которые следует умножать перед сравнением результаты измерения, полученные при разном освещении. Оснащённый таким датчиком робот можно научить выполнять интересные алгоритмы движения. Например, он сможет передвигаться по рабочему полю одного цвета, не нарушая границ "запретных" зон, выкрашенных в другой цвет.

Пример подключения фоторезистора для управления светодиодом

Данный пример демонстрирует подключение фоторезистора для управления светодиодом, для создания аналога ночника. Сопротивление фоторезистора зависит от интенсивности падающего на него света,поэтому при уменьшении освещенности светодиод будет гореть ярко,а при ярком свете отключаться.

Необходимые компоненты

  • Макетная плата;
  • Резистор на 220 Ом ;
  • Резистор на 10 кОм ;
  • Фоторезистор с номинальным сопротивлением 200кОм ;
  • Один красный светодиод;
  • Провода-перемычки;

Схема

Соедините 9 -ый цифровой вывод Arduino с одним из выводов 220 Ом -ного резистора, другой вывод этого резистора соедините с анодом светодиода(длинная ножка), а катод светодиода с землей(контакт GND на плате Arduino). Контакт 5V платы Arduino соедините с одним из выводов фоторезистора, а другой вывод соедините с 0 -ым аналоговым контактом Arduino и с одним из выводов 10кОм -го резистора, другой вывод резистора соедините с землей(контакт GND на плате Arduino).

Резистивный делитель напряжения состоит из двух резисторов, от соотношения сопротивлений зависит выходное напряжение. В данном примере один из резисторов переменный(фоторезистор, на номинальное сопротивление в 200кОм , т.е при полной темноте сопротивление фоторезистора будет равно номинальному,а при ярком свете падать почти до нуля), поэтому мы можем получить изменение напряжения. Другой резистор определяет чувствительность. Если использовать подстроечный резистор, то можно сделать настраиваемую чувствительность.

От того где расположен фоторезистор и номинал постоянного резистора в схеме делителя напряжения зависит масштаб и точность показаний. Измените схему и посмотрите через монитор порта(для этого можете загрузить код из раздела "Код для корректировки параметров" , расположенный ниже) как меняются показания.

В мониторе порта в первом и во втором случае вы увидите, что не получите весь диапазон значений(от 0 до 1023), потому что сопротивление фоторезистора никогда не будет равно нулю. Но вы сможете определить минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности(значения зависят от условий освещенности, значения постоянного резистора и характеристик фоторезистора), для построения нашего "ночника".

Код

Загрузите скетч, показанный ниже, в плату Arduino .

    #define RLED 9 //Красный светодиод подключаем к 9-му цифровому контакту с поддержкой ШИМ

  1. int val = 0 ; //Переменная для хранения считываемого значения с датчика

  2. void setup()

    pinMode(RLED, OUTPUT) ; //Устанавливаем 9 вывод как выход

  3. void loop()

    val = analogRead(LIGHT) ; //считываем значение с аналогового входа

    val = map(val, MIN_LIGHT, MAX_LIGHT, 255 , 0 ) ; //преобразуем диапазон считываемых значений

    val = constrain(val, 0 , 255 ) ; //"определяем" области допустимых значений

    analogWrite(RLED, val) ; //управляем светодиодом

  • Примечание: В данном примере используется фоторезистор с номинальным сопротивлением в 200кОм . Если у вас фоторезистор на другой номинал, возможно вам придется изменить минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности.

Код для корректировки параметров

Если у вас фоторезистор на другой номинал возможно вам придется подкорректировать минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности. Для этого добавьте две строчки кода(выделены цветом). И определите минимальное(MIN_LIGHT) и максимальное(MAX_LIGHT) значение освещенности, перекрывая(и наоборот открывая) рукой доступ к свету для фоторезистора и наблюдая за изменениями значений с помощью монитора последовательного порта. После корректировки вы можете закомментировать добавленные строчки кода.

    #define RLED 9 //Красный светодиод подключаем к 9-му цифровым контактом с поддержкой ШИМ

    #define LIGHT 0 //Фоторезистор подключаем к 0-му аналоговому контакту

    #define MIN_LIGHT 200 //Минимальное значение освещенности

    #define MAX_LIGHT 900 //Максимальное значение освещенности

Датчики освещенности (освещения), построенные на базе фоторезисторов, довольно часто используются в реальных ардуино проектах. Они относительно просты, не дороги, их легко найти и купить в любом интернет-магазине. Фоторезистор ардуино позволяет контролировать уровень освещенности и реагировать на его изменение. В этой статье мы рассмотрим, что такое фоторезистор, как работает датчик освещенности на его основе, как правильно подключить датчик в платам Arduino.

Фоторезистор, как следует из названия, имеет прямое отношение к резисторам, которые часто встречаются практически в любых электронных схемах. Основной характеристикой обычного резистора является величина его сопротивления. От него зависят напряжение и ток, с помощью резистора мы выставляем нужные режимы работы других компонентов. Как правило, значение сопротивления у резистора в одних и тех же условиях эксплуатации практически не меняется.

В отличие от обычного резистора, фоторезистор может менять свое сопротивление в зависимости от уровня окружающего освещения. Это означает, что в электронной схеме будут постоянно меняться параметры, в первую очередь нас интересует напряжение, падающее на фоторезисторе. Фиксируя эти изменения напряжения на аналоговых пинах ардуино, мы можем менять логику работы схемы, создавая тем самым адаптирующиеся под вешние условия устройства.

Фоторезисторы достаточно активно применяются в самых разнообразных системах. Самый распространенный вариант применения - фонари уличного освещения. Если на город опускается ночь или стало пасмурно, то огни включаются автоматически. Можно сделать из фоторезистора экономную лампочку для дома, включающуюся не по расписанию, а в зависимости от освещения. На базе датчика освещенности можно сделать даже охранную систему, которая будет срабатывать сразу после того, как закрытый шкаф или сейф открыли и осветили. Как всегда, сфера применения любых датчиков ардуино ограничена лишь нашей фантазией.

Какие фоторезисторы можно купить в интернет-магазинах

Самый популярный и доступный вариант датчика на рынке – это модели массового выпуска китайских компаний, клоны изделий производителя VT. Там не всегда можно разораться, кто и что именно производит тот или иной поставщик, но для начала работы с фоторезисторами вполне подойдет самый простой вариант.

Начинающему ардуинщику можно посоветовать купить готовый фотомодуль, который выглядит вот так:


На этом модуле уже есть все необходимые элементы для простого подключения фоторезистора к плате ардуино. В некоторых модулях реализована схема с компаратором и доступен цифровой выход и подстроечный резистор для управления.

Российскому радиолюбителю можно посоветовать обратить на российский датчик ФР. Встречающиеся в продаже ФР1-3, ФР1-4 и т.п. - выпускались ещё в союзовские времена. Но, несмотря на это, ФР1-3 – более точная деталь. Из этого следует и разница в цене За ФР просят не более 400 рублей. ФР1-3 будет стоить больше тысячи рублей за штуку.

Маркировка фоторезистора

Современная маркировка моделей, выпускаемых в России, довольно простая. Первые две буквы - ФотоРезистор, цифры после чёрточки обозначают номер разработки. ФР -765 - фоторезистор, разработка 765. Обычно маркируется прямо на корпусе детали

У датчика VT в схеме маркировке указаны диапазон сопротивлений. Например:

  • VT83N1 - 12-100кОм (12K – освещенный, 100K – в темноте)
  • VT93N2 - 48-500кОм (48K – освещенный, 100K – в темноте).

Иногда для уточнения информации о моделях продавец предоставляет специальный документ от производителя. Кроме параметров работы там же указывается точность детали. У всех моделей диапазон чувствительности расположен в видимой части спектра. Собирая датчик света нужно понимать, что точность срабатывания - понятие условное. Даже у моделей одного производителя, одной партии, одной закупки отличаться она может на 50% и более.

На заводе детали настраиваются на длину волны от красного до зелёного света. Большинство при этом «видит» и инфракрасное излучение. Особо точные детали могут улавливать даже ультрафиолет.

Достоинства и недостатки датчика

Основным недостатком фоторезисторов является чувствительность к спектру. В зависимости от типа падающего света сопротивление может меняется на несколько порядков. К минусам также относится низкая скорость реакции на изменение освещённости. Если свет мигает - датчик не успевает отреагировать. Если же частота изменения довольно велика - резистор вообще перестанет «видеть», что освещённость меняется.

К плюсам можно отнести простоту и доступность. Прямое изменение сопротивления в зависимости от попадающего на неё света позволяет упростить электрическую схему подключения. Сам фоторезистор очень дешев, входит в состав многочисленных наборов и конструкторов ардуино, поэтому доступен практически любому начинающему ардуинщику.

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе – подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону. Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Пример скетча датчика освещенности на фоторезисторе

Мы подключили схему с фоторезистором к ардуино, убедились, что все сделали правильно. Теперь осталось запрограммировать контроллер.

Написать скетч для датчика освещенности довольно просто. Нам нужно только снять текущее значение напряжения с того аналогового пина, к которому подключен датчик. Делается это с помощью известной нам всем функции analogRead(). Затем мы можем выполнять какие-то действия, в зависимости от уровня освещенности.

Давайте напишем скетч для датчика освещенности, включающего или выключающего светодиод, подключенный по следующей схеме.

Алгоритм работы таков:

  • Определяем уровень сигнала с аналогового пина.
  • Сравниваем уровень с пороговым значением. Максимально значение будет соответствовать темноте, минимальное – максимальной освещенности. Пороговое значение выберем равное 300.
  • Если уровень меньше порогового – темно, нужно включать светодиод.
  • Иначе – выключаем светодиод.
#define PIN_LED 13 #define PIN_PHOTO_SENSOR A0 void setup() { Serial.begin(9600); pinMode(PIN_LED, OUTPUT); } void loop() { int val = analogRead(PIN_PHOTO_SENSOR); Serial.println(val); if (val < 300) { digitalWrite(PIN_LED, LOW); } else { digitalWrite(PIN_LED, HIGH); } }

Прикрывая фоторезистор (руками или светонепроницаемым предметом), можем наблюдать включение и выключение светодиода. Изменяя в коде пороговый параметр, можем заставлять включать/выключать лампочку при разном уровне освещения.

При монтаже постарайтесь расположить фоторезистор и светодиод максимально далеко друг от друга, чтобы на датчик освещенности попадало меньше света от яркого светодиода.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

Пример скетча:

#define PIN_LED 10 #define PIN_PHOTO_SENSOR A0 void setup() { Serial.begin(9600); pinMode(PIN_LED, OUTPUT); } void loop() { int val = analogRead(PIN_PHOTO_SENSOR); Serial.println(val); int ledPower = map(val, 0, 1023, 0, 255); // Преобразуем полученное значение в уровень PWM-сигнала. Чем меньше значение освещенности, тем меньше мощности мы должны подавать на светодиод через ШИМ. analogWrite(PIN_LED, ledPower); // Меняем яркость }

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

Int val = 1023 – analogRead(PIN_PHOTO_RESISTOR);

Схема датчика освещения на фоторезисторе и реле

Примеры скетча для работы с реле приведены в статье, посвященной программированию реле в ардуино. В данном случае, нам не нужно делать сложных телодвижений: после определения «темноты» мы просто включаем реле, подавай на его пин соответствующее значение.

#define PIN_RELAY 10 #define PIN_PHOTO_SENSOR A0 void setup() { pinMode(PIN_RELAY, OUTPUT); digitalWrite(PIN_RELAY, HIGH); } void loop() { int val = analogRead(PIN_PHOTO_SENSOR); if (val < 300) { // Светло, выключаем реле digitalWrite(PIN_RELAY, HIGH); } else { // Темновато, включаем лампочку digitalWrite(PIN_RELAY, LOW); } }

Заключение

Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением. Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения. Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».